Atmospheric aerosols in Amazonia

Course on atmospheric aerosols and clouds with introduction to process oriented modeling 16 – 27 March 2015

> Luciana V. Rizzo Irizzo@unifesp.br

e Swedish Foundation for International opperation in Research and Higher Education

Outline

- 1. Introduction: aerosol sources in Amazonia
- 2. Aerosol physical characterization
- 3. Aerosol chemical characterization
- 4. Aerosol dynamical processes

1) INTRODUCTION: AEROSOL SOURCES IN AMAZONIA

Biosphere-atmosphere interactions

Naturally, the Amazon forest interacts strongly with the atmosphere and climate. There are strong and complex links between the forest biology, and the atmospheric physics and chemistry

Natural System

Amazonia: 3 types of aerosol particles

Biogenic (primary and SOA)

Biomass Burning

Dust from Sahara

Each with VERY different properties and impacts Size: from 1 nanometer to 10 micrometers

Biogenic aerosol

Atmospheric budget of primary biological aerosol particles from fungal spores

Annual mean of optimized GEOS-Chem simulation of fungal PBAP: (a) PBAP emissions, (b) percentage contribution of fungal PBAP to fin e organic aerosol (OA) surface concentrations, (c) fine-mode fungal PBAP surface concentrations, and (d) coarse-mode fungal PBAP surface concentrations.

Biogenic aerosols

Bacteria, Brochosomes, Spores, Pollen, Plant Debris, etc.

=0

Uli Pueschl, 2012

0.5 µm

Biomass burning

Deforestation was reduced from 27,700 km² in 2004 to 5,000 km² in 2013.

Deforestation in Amazonia 1977-2013 in km² per year

Wet season

Focos de Queima Focos de Queima Acumulado de Fevereiro de 2014 Acumulado de Setembro de 2014 Satelite de Referencia: AQUA_M-T Satelite de Referencia: AQUA_M-T EQ EQ 6S-6S-10S-10S 155 155 20S-20S 25S 25S Total de focos 1548 Total de focos 43174 Tatal de quadrículas com focos 850 Total de quadrículas com focos 5324 Tamanho medio dae quadrículae, Tamanho medio dae guadrículae. Numero minimo de focos 1 Numero minimo de focos 1 308 308com focos: 25km x 25km. com focos: 25km x 25km. Numero maximo de focos 30 Numero maximo de focos 102 Numero medio de focos 1:81 Numero medio de focos 7:47 Fontes de /dodos: DSA/INPE Fontes de /dodos: DSA/INPE Desvio padrao dos focos 1.87 Desvio padrao dos focos 9.3 CPTEC/INPE CPTEC/INPE 6ÓW 50W 60W 6ŚW 55W AİW. 4ÔW 700 8ŚW 55W 5ÓW 1 THE 7ŚW 7ŚW Numero de focos Numero de focos 10 15 20 50 100 200 10 15 20 50 100 200

Dry season

Biomass burning aerosols

- Smoldering phase
- 1-2 h aged
- Coating and type of mixture affects particle optical properties

Las Conchas wildfire in 2011

Air Mass Trajectories (10 days) and Footprint

Long range transport of Sahara desert particles to Amazonia

OUSI

African aerosol in central Amazonia

Smoke and dust AOD for the 17 observation cases in 2008 indicating the advection of African aerosol toward Amazonia (Baars, 2011).

Amazonia: 4 types of aerosol particles

Biogenic (primary and SOA)

Biomass Burning

Dust from Sahara

Urban emissions

Manaus metropolis

2.4 million people
100 000 km²
620 000 vehicles
Power plants

Belém metropolis 2.6 million people 3.600 km² 1.3 million vehicles

2 - AEROSOL PHYSICAL PROPERTIES

2 - AEROSOL PHYSICAL PROPERTIES

2A – PARTICLE LOADING

PM10 concentration: Arc of deforestation

49 - 4 ARTAXO ET AL.: CHEMICAL AND PHYSICAL PROPERTIES OF AMAZON BASIN AEROSOLS

TT34 Forest Site - Black Carbon Concentration fine and coarse mode

TT34 forest site: particle number concentration

CPC COUNTS, GoAmazon2014/5, IOP1, 16 March 2014, 14:41 to 15:49 UTC IARA: *Karla Longo, Beat Schmid, Scot Martin, and many important collaborators*

Image Landsat

Google earth Slide prepared by Scot Martin

16.2 km

Particle Counts, +/- local noon, 13 March 2014

1300 ft except final inbound let at 3000 ft

5

Range: 400 to 50,000 particles

Image Landsat

Google earth

Particle Counts along Flight Path

2B – PARTICLE SIZE DISTRIBUTION

2 - AEROSOL PHYSICAL PROPERTIES

TT34 forest site aerosol size distributions 2008-2011

Wet season

Dry season

Fit Parameters for median size distributions:

	Ultrafine mode			Aitken mode			Accumulation mode		
	N1 [cm-3]	Dpg1 [nm]	sg1	N2 [cm-3]	Dpg2 [nm]	sg2	N3 [cm-3]	Dpg3 [nm]	sg3
Wet season (Dec-Jun)	121	34.9	0.28	314	71.0	0.20	403	163.5	0.24
Dry season (Jul-Nov)				926	117.3	0.36	699	175.9	0.22

SAMBBA Porto Velho

Single mode size distribution: processing leads to small changes in size distribution shape

SAMBBA Porto Velho aerosol size distributions Dry versus wet season

Aerosol size distribution T0a (ATTO) versus T2 (urban)

Wet season

Dry season

(Joel Brito results)

Aerosol size distribution at T2 (urban)

2B – PARTICLE OPTICAL PROPERTIES

2 - AEROSOL PHYSICAL PROPERTIES

14 years of AERONET measurements in Amazonia

(Fernando Morais e Bruna Holanda, 2014)

Scattering, absorption and SSA in TT34 forest site and Porto Velho

Monthly statistics (2009 – 2012) for light scattering coefficient σ_s at 637 nm and light absorption coefficient σ_a at 637 nm in Mm⁻¹ for Porto Velho (PVH, in black) and central Amazonia (TT34, in red).

Single Scattering Albedo Lower at the pristine site

Artaxo et al., 2013

Forest sites - scattering and absorption comparison (2008-2014)

All data corrected for STP (1013 mbar, 0C).

Forest sites - Single scattering albedo and scattering angstrom comparison (2008-2014)

Forest sites: a zoom in the dry season Light scattering

Forest site: a zoom in the dry season Black Carbon

A zoom in the wet season (TT34xATTO)

Aerosol absorption at TT34 forest site

Rizzo et al., 2012

Under the influence of African advection:

- Absorption increase by a factor of 2.0
- Albedo descrease by 7%

Refractory aerosols

- Thermically inerts (oxidize above ~ 600 °C)
- Strong light absorption
- Examples: graphite, soot, policyclic aromatics, HULIS (humic-like), biopolimers

Aerosol absorption spectra – pasture site

Rizzo et al., 2011

Angstrom exponent for absorption

Experiment	$\sigma_{\rm abs}$ (450) Mm ⁻¹	Ångström Linear Fit (å _{lin})
Forest Dry 2004 (ZF2-C14)	11±8*	1.3±1.3**
Pasture 2002 (SMOCC)	21±22	1.7±0.4
Pasture Dry 2002 (SMOCC)	33±5	1.8±0.4
Pasture Transition 2002 (SMOCC)	11±	1.6±0.4
Pasture Wet 2002 (SMOCC)	2.7±0.2	1.5±0.4
Pasture Dry 1999 (EUSTACH)	26±1	1.7±0.4

Rizzo et al., 2011

- $a = 1.0 \rightarrow \text{soot carbon}$
- å > 1.0 → "brown carbon": HULIS, dust, biomass burning aerosols

Forest Site (ATTO) Absorption and scattering Angstrom exponent

Plots of AAE for different ranges of absorption coefficients for PM 10 inlet.

Histograms of Scattering Angstrom exponents

Bruna Holanda data

T0z – PM10 versus PM2.5 absorption

Comparison of the light absorption coefficients at 880nm between AE33 with PM10 and PM2.5 inlets, showing 30 min averages of data compensated for the loading effect and multiple scattering. Slopes of the correlation between light absorption coefficients at 880nm measured by AE33 with PM10 and PM2.5 inlets, as a function of the maximum abs used in the regression.

Bruna Holanda data

3 - AEROSOL CHEMICAL CHARACTERIZATION

Biogenic aerosols in Amazonia (C14 forest site)

- Mass: 10-15 μg/m³, Number: 300-500 cm⁻³
- 70% of the mass on the coarse mode
- Organic matter = 60-70% FPM and 70-85% of CPM

TT34 forest site: Aerosol elemental composition

K (fine mode): tracer for biomass burning and for biogenic aerosols Al, Si, Ti, Fe (fine mode): tracer for soil dust

Rizzo et al., 2012

Composition – Dry Season at T2 (urban)

Brito, 2014

T2 - Organic aerosol source apportionment

Positive Matrix Factorization analysis four factors:

T2 – dry season

- HOA (Urban),
- **BBOA** (biomass burning)
- Fac82 (isoprene SOA under low NOx condition)
- OOA (oxidized aerosols).

(Joel Brito results)

Organic aerosols from ATTO to Tiwa and Macapuru (with BC)

Carbone, 2015

Regional background under Manaus plume

T0a – ATTO aerosol properties SMPS versus ACSM

Samara Carbone

SAMBBA Aerosol composition

Triangle plots

- All Organic Aerosol (OA) components fall within a triangular space
- Hydrocarbon like OA (HOA): f44 < 0.05 (mostly primary)
- OOA: oxigenated OA (mostly secondary)
- LV-OOA: low volatile
- SV-OOA: semi volatile

N. L. Ng et al.: Changes in organic aerosol composition

A highly oxidized aerosol at ZF2 (July-Dec 2013) and ATTO (Jan-Mar 2014)

f44 = mainly CO₂^{+,} an indicator of highly oxidized species

f43 = mostly due to $C_2H_3O^+$, an indicator of less oxidized species.

SAMBBA Biomass Burning f44/f43 plot ACSM

f44 = mainly CO₂^{+,} an indicator of highly oxidized species

f43 = mostly due to $C_2H_3O^+$, an indicator of less oxidized species.

f60 = biomass burning marker

Brito, 2013

Sulfate is intimately related to BC, but with various ratios

The different slopes likely represent episodes of LRT pollution

What drives light scattering and absorption for PM1? T0a - Organics versus light scattering and absorption

The organics made up to 76% of the fine particles and when investigated as a function of the scattering coefficient (σ_{450}) different patterns (with different slopes) were observed over time. BC also shows different patterns but less pronounced Carbone, 2014

4 - AEROSOL DYNAMICAL PROCESSES IN AMAZONIA

Aerosol cycling in Amazonia

Atmosphere & Climate

- aerosols & gases
- clouds & precipitation
- radiation & dynamics

Mechanistic understanding, quantitative prediction & human influence ?

- spread & change of organisms & ecosystems
- human, animal & plant diseases

Biosphere & Public Health

Sources and processing of organic aerosol in pristine Amazonian boundary layer air

Aerosol and cloud lifecycles

Few events of new particle formation observed at surface under pristine conditions in Amazon

New particle formation: a twostep process:

- 1st step: sulfuric acid and amines, ammonia, or organic vapor form stable clusters
- 2nd step: organic vapor leads to enhance growth rate of the clusters to larger sizes.

Why no new particle formation?

- Low SO₂ concentration (20-30ppt) suggests the concentration of H₂SO₄ is low
- Organic concentration may be low for the growth of stable clusters.

What is the impact of Manaus plume on NPF?

New particle formation? Bursts of particles 10<D_p<30 nm.

Aerosol size distributions measured in 2009 Apr 4th. There was a burst of ultrafine particles from 2:00 to 4:00 UTC time.

New particle formation and subsequent growth was seldom observed along two years of measurements. Nevertheless, in 70% of the days, bursts of particles with diameters in the range 10-40nm were detected. The events usually lasted from 20 to 120min, and the subsequent growth to larger sizes was not always clearly observed.

New particle formation events at T2 (urban)

Aerosol impact on photosyntesis

Amazonia Rondonia Forest site 2000-2001

Thanks for the attention!

lrizzo@unifesp.br

GoAmazon T2 site Tiwa Hotel

GoAmazon 2014/5 sampling sites

T0e

T1

ATTO T0a

Wind direction

Manacapuru

129 km

Image Landsat Imagery Date: 4/9/2013

2°00'43

Porto Velho aerosol and trace gases sampling location

Sampling location at Porto Velho zoo botanic park

Continuous aerosol and trace gas analysis from Sept. 2009-Oct. 2012