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OVERVIEW 



Why use numerical models to study clouds ? 

» Huge range of spatial scales 

– lab studies of cloud difficult 

» Complex feedbacks between 

microphysics and dynamics in 

clouds 

– Latent heating and burden of 

condensate affects vertical 

motions (FB) 

– Vertical motions determine 

precipitation production and 

microphysical processes 

» Models allow each feedback 

mechanism to be studied  
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INITIAL VALUE PROBLEM 



 



Atmospheric simulation is an initial 

value problem with laws being ODEs  

 



FINITE-DIFFERENCE 

EQUATIONS AND 

DISCRETIZATION 

 



 



 



 



Atmospheric Models 

» Global models divide the 

world into a grid, data is 

held on the intersections of 

the grid. 

» Figure shows a 10 grid 

» MetOffice global model 

uses a grid of 

approximately 0.8 

longitude by 0.5 latitude 

– UK represented by ~10x20 

grid points (~60km spacing) 
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Mesoscale (e.g. cloud) models now used 

for weather forecasting 

» MetOffice mesoscale 

model – higher resolution, 

limited area model. 

» Uses the global model to 

provide initialization and 

boundary conditions. 

– 0.11° by 0.11° grid: 

approximately 11km 

resolution. 

– 38 vertical levels in both 

global and mesoscale models, 

spacing increases with 

altitude. 13 
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PARAMETERIZATION 



Parameterization 

• Parameterization is the simplification of a complex 
physical process in terms of parameters that are 
available to the model, or readily measured. 

• Models must use parameterizations of processes 
that : 

– Take place on scales smaller than the model grid 

– Involve parameters that are not explicitly defined in the 
model 
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Pennines Vale of York North Sea 

Model resolution is too low to resolve: 

• Individual clouds, even large thunderstorms. 

• Full details of topography 

• Details of changes of surface type 

 

Processes on scales smaller than the grid must be parameterized. 



 



 



Microphysics param. 

» Source and sink of 

vapour from clouds 

– Diffusion of vapour 

onto hydrometeors 

» Condensation, 

vapour growth of 

ice, evaporation 

– Coagulation 

» Riming, ice-ice 

aggregation 

» Coalescence 



Turbulent mixing parameterisations 



» PBL is characterised by turbulence 

– 𝑋 = 𝑋′ 𝑒𝑑𝑑𝑖𝑒𝑠 + 𝑋   (𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒)  

– Turbulent eddies mix & homogenise (diffusion) heat .. 

(ρ cp θ), moisture (ρ qv), momentum (ρ u), and their 

conserved variables, E.g. X = θ, qv , u  

– Flux is quantity per m2 (normal to dirn.) per sec 
 

» Turbulent flux, 𝒇𝑿, of ρ X (in direction s), is 

proportional to gradient of mean of X 

  𝑓𝑋 = 𝜌 𝑈′𝑋′ = −𝜌𝐾 
𝜕𝑋 

𝜕𝑠
 

– X = θ or qv in unsaturated parcels; X = θe or qT in all 

(e.g. saturated) parcels;  or else X = u, v or w; 

– U is air speed in direction s, K is turb. diffusivity 

» U and s may be w and z for vertical mixing (PBL)  

» Or they could be u and x for horizontal mixing 
 

» Convergence of turbulent flux is source of the 

mean, 𝑿 , and the 1D diffusion eqn is: 
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Examples of diffusion in nature 

» Point-source of a tracer initially is 
diffused by 3D turbulence in PBL 

– Pollutant concentration, C, has 
an ever-widening Gaussian 
profile following the motion, 
until homogeneously mixed 

 
𝐷𝐶

𝐷𝑡
= 𝐾 

𝜕2𝐶

𝜕𝑥2
+

𝜕2𝐶

𝜕𝑦2
+

𝜕2𝐶

𝜕𝑧2
+ …  

» 1D conduction or convection of heat 
in material with insulated ends: 

–
𝐷𝑇

𝐷𝑡
= 𝐾

𝜕2𝑇

𝜕𝑥2
 

 

» 1D diffusion of solute in a fluid 

𝐷𝐶

𝐷𝑡
= 𝐾

𝜕2𝐶
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SUMMARY 



» Evolution equations of clouds are nonlinear 

» Need to solve them numerically with finite-difference 

approximations for derivatives 

» Model grid 

» Sub-gridscale processes must be parameterized 

– Cloud microphysics 

– Turbulence 

» Atmosphere is chaotic and difficult to predict 

– Especially for clouds ! 
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