Introduction to Cloud Modeling. Part I: Model
Architecture and Parameterizations

Vaughan Phillips

Course on “atmospheric aerosols and clotaswith// <k

Introduction to process oriented mod@ﬁ’? B~ /1) &g

Sao Paulo University 2 ) \/
"4 AV
damxz




Outline

» Overview

» Initial value problem

» Finite-difference equations and discretization
» Parameterization

» Summary




OVERVIEW




Why use numerical models to study clouds ?

» Huge range of spatial scales

Air motions
(‘dynamics’)

— |lab studies of cloud difficult

» Complex feedbacks between
microphysics and dynamics in e
clouds SR o

(‘microphysics’)
— Latent heating and burden of
condensate affects vertical
motions (Fg)

Latent heating
and weight

— Vertical motions determine
precipitation production and
microphysical processes

» Models allow each feedback
mechanism to be studied
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maths definition: Initial Value Problem

» Initial value problem is
an ordinary differential
equation (ODE) with a
known, specified value
of solution at one point.
(the initial condition) E““aﬁ
(ty Vo/

» Simple example:

- ODE: y'(t) = /1, y(v)) 1
> Initial condition: yt,) =y,




Atmospheric simulation Is an initial
value problem with laws being ODEs

» Momentum: Dv/Dt = 2, F,

!

= v Is velocity and F; are forces per Atmospheric
LUNIt mass laws (ODEs)
» Heat: D@ / Dt = 2,5, present ‘ future
= @is potential temperature; _
- S; are heat-sources (e.g. Initial fime
radiative), | condition Forecast
= Ist Law of thermodynamics (analysis of (solve <
observed ODEs on'¢
» Mass: Dp/Dt = - p div gata) global N\
= p1s air density grid) yy

= div (= T.v)is divergence of v
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FINITE-DIFFERENCE
EQUATIONS AND
DISCRETIZATION




maths facts: Nonlinear Equations

» Any equation is linear if it can be expressed as
f(x) = C where

fa,x, +ax,) = a,f(x;)+ alx,)

for all x;and x, (here, a;, a, and Care
constants): the equation is nonlinear otherwise

» Eg. 3x = 2 1s linear, but x4 + 3x =2 Is not
» Eg. dy/dt = -y is linear but dy/drt = —yfr is
nonlinear T E T

» Nonlinear ODEs are difficult to solve f
= No analytical solution, usually !

» Sensitivity to initial conditions i ﬁfﬂﬁf u re "
chauuc systems of nonlinear ODEs:- %, (o)

> Small changes tq’m}e*ﬁart of system cause hlg changE_
. throughoutit -
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maths method: Numerical Solution of ODEs

» Approximate the nonlinear ODEs:

> Discretisation: solution estimated only at discrete
points/times on grid

> Finite differences: derivatives in ODEs replaced by
approximations (e.qg. by Taylor expansions)

<
» Computers for numerical solution of difference '%
equation )’ R




maths method: Discretization and finite differences
to solve ODE numerically by computer

Example of initial value problem - Initial condition, y(t,, x) = Y ,(x)
Solution: y = v, x) ODE: y'(©t) = f(t, x)

» Discretisation: ),/ =~ y(x/, t,) where x/ = /Axand t, = n At

—~=l____L—

» Derivatives approximated by finite differences; e.q.:

yjnj. =~ 'f/yn—I/ B ynj.)/ﬂt

» Difference equation replaces ODE: _ | \
Voe! ~AL f(f”, x’) +yi "'/{
—*— %

» At n = 0, use y/ = Y,(x/); then increment n successively, updating  g«&y
w Ve by marching through time in time-steps, A7




Atmospheric Models

» Global models divide the
world into a grid, datais #7728
held on the intersections of /i~ A F87 5 o A% i)

» MetOffice global model
uses a grid of
approximately 0.8°
longitude by 0.5° latitude

— UK represented by ~10x20
grid points (~60km spacing)




Mesoscale (e.g. cloud) models now used
for weather forecasting

» MetOffice mesoscale
model — higher resolution,
limited area model.

» Uses the global model to
provide initialization and
boundary conditions.

— 0.11° by 0.11° grid:
approximately 11km
resolution.

— 38 vertical levels in both
global and mesoscale models,
spacing increases with
altitude.
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PARAMETERIZATION



Parameterization

* Parameterization is the simplification of a complex
physical process in terms of parameters that are
available to the model, or readily measured.

 Models must use parameterizations of processes
that :
— Take place on scales smaller than the model grid

— Involve parameters that are not explicitly defined in the
model
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Model resolution is too low to resolve:
 Individual clouds, even large thunderstorms.

* Full details

of topography

» Details of changes of surface type

Processes on scales smaller than the grid must be parameterized.
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Processes too small to resolve on grid:

» Computational expense limits resolution, Ax, of grid

) Chaﬂen?&' some (“small-scale”) phenomena of spatial scale, £,
are too fine to be resolved and influence large-scale flow

L < Ax

« convection, turbulent fluxes, radiation, cloud microphysics .
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ODE for conserved qty, X, at a point - DX/Dt = 2,5, | w@
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Processes too small to resolve on grid:

» Computational expense limits resolution, Ax, of grid

) Chaﬂen?e: some (“small-scale”) phenomena of spatial scale, £,
are too fine to be resolved and influence large-scale flow

[ < Ax

= convection, turbulent fluxes, radiation, cloud microphysics ..

» Approach: estimate average net effects from unresolved
processes in terms of resolved variables (parameterization)

- some unphysical assumptions needed (e.g. scale separation
- parameterization gives extra tendency, S, due to unresolve
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processes, after averaging ODE over gl‘idEbe (< >): 'f‘/I(i)'){<
®
ODE solved on model grid-  D<X>/Dt = 2,<5; > + 5, @é’?
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Microphysics param.

/ Deposition Nuclei
: ” (supersaturation dependence) ~—
» Source and sink of N
vapour from clouds Cloud g ICE |
Conrgen;a.tion SPLINTERS
. . U ’
— Diffusion of vapour o f
onto hydrometeors CLOUD | Condensation | | |
DROPLETS | Coalescence | DROPS J Deposiion
» Condensation, ) | Rining
vapour growth of | Freezing
ice, evaporation 1l ¥
| | Rinig—sf GRAUBBL| [ il [~
— Coagulation ' Riming— ]
; ? Aggregation
Freezing i .

» Riming, ice-ice

. SNOWFLAKES|
aggregation |

» Coalescence




Turbulent mixing parameterisations




» PBL Is characterised by turbulence
- X = X'(eddies) + X (mean value)

— Turbulent eddies mix & homogenise (diffusion) heat ..

(p c, 6), moisture (p g,), momentum (p u), and their
conserved variables, E.g. X=6,q,, u

— Flux is quantity per m? (normal to dirn.) per sec

» Turbulent flux, fx, of p X (in direction s), is
proportional to gradient of mean of X
f U'x’ K oX
X p _ p aS
— X =0orq,in unsaturated parcels; X = 6, or g;in all
(e.g. saturated) parcels; orelse X =u, v orw,;
— U is air speed in direction s, K is turb. diffusivity

» U and s may be w and z for vertical mixing (PBL)

» Or they could be u and x for horizontal mixing

» Convergence of turbulent flux is source of the
mean, X, and the 1D diffusion egn is:

. o
DX o _19f .. 90X« Diffusion

Dt p 0s ds? term

/ Turbulent
diffusion

—>

Edgy

%

low-X fluid,
X<0ifuU<0

—

U

Turbulent
flux of X

—

‘ U'X >0

S

\

High-X fluid, X
g, >0ifU>0
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Examples of diffusion in nature

<a

» Point-source of a tracer initially is

profiles

— Pollutant concentration, C, has
an ever-widening Gaussian
profile following the motion, _
until homogeneously mixed +y ™

!

Pollutant

diffused by 3D turbulence in PBL concentration—

Plume
centerline

= Actual stack height
= Effective stack height
= pollutant release heigl

DC 9%Cc , 9°C |, 9°C = 2
E =K (6x2 + 6y2 + 622) T aAh =pf:n'?e rise
» 1D conduction or convection of heat T ey
in material with insulated ends: =t
DT _ ,,0°T N
Dt = 9x?2 _ |
[/~ &‘
» 1D diffusion of solute in a fluid CEEIT " Tl
DC K 0%C
Dt = 0x?2




SUMMARY




» Evolution equations of clouds are nonlinear

» Need to solve them numerically with finite-difference
approximations for derivatives

» Model grid

» Sub-gridscale processes must be parameterized
— Cloud microphysics
— Turbulence

» Atmosphere is chaotic and difficult to predict| ¢

— Especially for clouds !
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PREDICTABILITY AND
CHAQOS




Chaos N

» Chaotic systems far from
equilibrium have only
limited ﬁredictability (e.g.
atmosphere)

Tempetalure (C)

- Small differences in initial
conditions

- big differences after a time

Foracast rancs (days)

= Predictability deteriorates with
time, despite system being
deterministic

» Attractors (sets of points in_
phase-space towards —
which system evolves)

. Order amid disorder




Ensemble predictions

» Sensitivity to initial conditions = chaos

- Atmosphere is chaotic

- Errors in observing present atmosphere
cause large forecast errors a few days ahead

- Predictability depends on flow regime
» Ensemble of predictions differing in
initial conditions is more accurate

- Mean of ensemble usually more accurate
than one of its members

- Uncertainty in forecast and probability of
m. different scenarios estimated




