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INTRODUCTION 



Introduction 

 

 

Cloud modeling:  

Aim to predict future state of the clouds and atmospheric circulation from 

knowledge of present state by using numerical approximations to the dynamical 

and physical evolution equations 

 

 

 



FINITE DIFFERENCES: 

THEORY 

 



Finite differences 

The equations of motion, energy and mass conservation cannot be solved 

analytically. 

 

They must be approximated and then solved numerically. 

 

For this approximation, a discretization method is used. 

 

Simplest form: finite difference method 

 



Finite differences 

Consider a field variable u(x). 

  - u(x):  solution to a differential equation in the interval 0 x  L 

  - the interval can be devided into J (j=0,2,…,J) equally distanced    

    subintervals of length x=L/J  
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Finite differences 

Consider a field variable u(x). 

  - now u(x).can be approximated by a set of J+1 values as  

 

   which are the values at the J+1 grid points which are given by 

 

 - if x is sufficiently small (relative to length-scale of variations in u), then all 

 of the J+1 grid points may provide a good approximation to u(x)  
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Finite differences 

Expressions for derivatives 

- Consider the Taylor series expansions about the point x0:  
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()‘: differentiation with respect to x 

O[(x)4]: terms with order of (x)4 and terms smaller than this are neglected 
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1st derivative: adding u(x0+x) and u(x0-x) and solve for u‘ 

2nd derivative: subtracting u(x0-x) from u(x0+x) and solve for u‘‘ 



 

 

 

 

 

 

 

 

 

Finite differences 

expressing derivatives 

1st derivative: adding u(x0+x) and u(x0-x) and solve for u‘ 

2nd derivative: subtracting u(x0-x) from u(x0+x) and solve for u‘‘ 
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centered differences 

note: Centered differences neglect terms of order (x)2 and higher. The truncation 

error is of order (x)2. 



 

 

 

 

 

 

 

 

 

Finite differences 

assessing the limits of accuracy 

- any field resolved on a grid can be approximated by a finite Fourier series 

expansion: 
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- One can determine a0, am and bm for wave numbers m=1,2,…,J/2,  because J+1 

values of uj together determine the J+1 coefficients in this approximation. 

 



Finite differences 

limits of accuracy 

- Shortest wavelength component in this approximation has a wavelength of  

 

 

- This is the shortest wave that may be resolved with the FD scheme. 
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accurate representation is only possible for wavelengths greatly exceeding 2x 



FINITE DIFFERENCES: 

EXAMPLES 

 



Finite differences 

different methods: 

 

centered differences:  

 

 

forward differentiation: 

 

 

backward differentiation: 
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Finite differences 

 



 

 

 

 

 

 

 

 

 

Finite differences 

centered differences: explicit time differencing 

example: linear 1D advection equation 
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c: specified speed 

q(x,0): a known initial condition 

 

2nd order approximation in x and t using centered differences: 
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Finite differences 

centered differences: explicit time differencing 

- this set of algebraic equations can be solved to determine solutions for a finite 

set of points that define a grid mesh in x and t 



 

 

 

 

 

 

 

 

 

Finite differences 

centered differences: explicit time differencing 

- this set of algebraic equations can be solved to determine solutions for a finite 

set of points that define a grid mesh in x and t 

with  

x=m x, m=0,1,2,…,M 

t=s t, s=0,1,2,…,S 

we can define 

),(ˆ , tsxmqq sm 



 

 

 

 

 

 

 

 

 

Finite differences 

centered differences: explicit time differencing 

then (1) can be written as 
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note: - This form of time differencing is referred to as leapfrog method (the value at time s 

is given by the difference in values computed for time steps s+1 and s-1) 

 -The leapfrog method cannot be used at the initial time t=0 (s=0); unknown 

 - There and alternative method such as forward difference approximation is 

required. 
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Finite differences 
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COMPUTATIONAL STABILITY 

 



 

 

 

 

 

 

 

 

 

computational stability 

- Using finite difference appoximations will not always resemble solutions to the 

original differential equations, but  

- the solutions depend on the computational stability of the difference equations. 

 

computational unstable: numerical solution will growth exponentially in time even if 

the original differential equation system has solutions whose amplitudes remain 

constant in time.    

 

Courant-Friedrichs-Levy (CFL) stability criterion: 

  A difference equation is computationally stable if for a given space increment x, 

the time step t must be chosen that the dependent field will be advected a 

distance less than one grid length per time step, i.e. the Courant number is 

smaller or equal one: 
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computational stability 

blah 

 

 
 



SUMMARY 



» Finite differences are approximations created by Taylor 

expansion 

» Stability:  CFL condition 

– Timestep must be small enough, in view of resolution 

and flow-speed, if numerical solution is to be stable 

» Accuracy 

– Timestep and resolution must be fine enough 

 



Obrigado 

 


