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INTRODUCTION




Introduction

Cloud modeling:

Aim to predict future state of the clouds and atmospheric circulation from
knowledge of present state by using numerical approximations to the dynamical
and physical evolution equations




FINITE DIFFERENCES:
THEORY




Finite differences

The equations of motion, energy and mass conservation cannot be solved
analytically.

They must be approximated and then solved numerically.
For this approximation, a discretization method is used.

Simplest form: finite difference method




Finite differences

Consider a field variable u(x).
- u(x): solution to a differential equation in the interval 0 < x < L

- the interval can be devided into J (j=0,2,...,J) equally distanced
subintervals of length dx=L/J
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Finite differences

Consider a field variable u(x).
- now u(x).can be approximated by a set of J+1 values as
U;=u(J)
which are the values at the J+1 grid points which are given by

X=J), ]=12,..,J

- if 8x is sufficiently small (relative to length-scale of variations in u), then all
of the J+1 grid points may provide a good approximation to u(x)




Finite differences

Expressions for derivatives

- Consider the Taylor series expansions about the point X,,

u(x0+5x):u(x0)+u'(x0)5x+u"(xo)(5;) +u“'(x0)(5g) +O[(5x)4]

(9%)
2

(6%)

U(X, —OX) =U(X,) —U'(X,)OX+U"(X,) +O[(§x)4]

~U"(%,)

(): differentiation with respect to x

O[(dx)%]: terms with order of (6x)* and terms smaller than this are neglected

1st derivative: adding u(x,+dX) and u(x,-ox) and solve for u’

2nd derivative: subtracting u(x,-ox) from u(x,+0x) and solve for u”



Finite differences

expressing derivatives

1st derivative: adding u(x,+5x) and u(x,-6x) and solve for u’

U(Xg + X) —U(Xg — X)
20X

2nd derivative: subtracting u(x,-6x) from u(X,+6x) and solve for u”

+O[(%)°]

u'(Xp) =

U(Xg + X) —2U(Xg) +U(Xy — X)
(&)

0" (%) = +O[(%)°]

centered differences

note: Centered differences neglect terms of order (8x)? and higher. The truncation
error is of order (8x)2.



Finite differences

assessing the limits of accuracy

- any field resolved on a grid can be approximated by a finite Fourier series
expansion:

J/2
u(x) = %+ Z[am cos 2”me +b_sin on mx}
m=1

- One can determine a,, a,, and b, for wave numbers m=1,2,...,J/2, because J+1
values of u; together determine the J+1 coefficients in this approximation.



Finite differences

limits of accuracy

- Shortest wavelength component in this approximation has a wavelength of

L _ 2L _
= =5 = 20X

- This is the shortest wave that may be resolved with the FD scheme.

accurate representation is only possible for wavelengths greatly exceeding

KRE ~Slg




FINITE DIFFERENCES:
EXAMPLES




Finite differences

different methods:

U;.1—Uj;
centered differences: dU) RN J+1 -1
dx j 20X
. . du Uj1 —Uj
forward differentiation: — | >
dx j OX

backward differentiation: (dU) N Uj—Uja
J




Finite differences
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Figure 3.2: The backward, forward and centred finite differences of a function u (x), defined in the grid
points x = jAx so that u; = u; (jAx), where Ax is the grid lengthand j = 0. 1,2, ... are integers.
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Finite differences

centered differences: explicit time differencing

example: linear 1D advection equation

a—q+ca—q:0
ot  0oX

c: specified speed

g(x,0): a known initial condition

2"d order approximation in x and t using centered differences:

g(x,t+)—qg(x,t—o) _ _Cq(x+5x,t) — (X —X,1)
2N 20X

(1)




Finite differences

centered differences: explicit time differencing

- this set of algebraic equations can be solved to determine solutions for a finite
set of points that define a grid mesh in x and t




Finite differences

centered differences: explicit time differencing

- this set of algebraic equations can be solved to determine solutions for a finite
set of points that define a grid mesh in x and t

with
Xx=m ox, m=0,1,2,....M
t=s ot, s=0,1,2,...,S

we can define

qm,s =(q(maX,sdt)




Finite differences

centered differences: explicit time differencing

then (1) can be written as

Om s+1 —Oms—1 = _G(Qmﬂ,s - Qm—l,s)

with o=C— Courant number
OX

note: - This form of time differencing is referred to as leapfrog method (the value at time s
is given by the difference in values computed for time steps s+1 and s-1)

-The leapfrog method cannot be used at the initial time t=0 (s=0); unknown qm’s_l

- There and alternative method such as forward difference approximation is

required.



Finite differences
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shown in green . The red points are the necessary initial condition points and the blue points illustrate
here two boundaries of the domain, which have to be prescribed.







computational stability

- Using finite difference appoximations will not always resemble solutions to the
original differential equations, but

- the solutions depend on the computational stability of the difference equations.

computational unstable: numerical solution will growth exponentially in time even if
the original differential equation system has solutions whose amplitudes remain
constant in time.

Courant-Friedrichs-Levy (CFL) stability criterion:

A difference equation is computationally stable if for a given space increment ox,
the time step 6t must be chosen that the dependent field will be advected a
distance less than one grid length per time step, i.e. the Courant number is

smaller or equal one: o
o=Cc—X<1
OX



computational stability
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SUMMARY




» Finite differences are approximations created by Taylor
expansion

» Stability: CFL condition

— Timestep must be small enough, in view of resolution
and flow-speed, if numerical solution is to be stable

» Accuracy
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