Introduction to Cloud Modeling. Part VI: Types of Model

Vaughan Phillips

Course on "atmospheric aerosols and clouds with introduction to process oriented modeling". Sao Paulo University

Outline

- » Introduction
- » 0D 'parcel models'
- » 1D cloud models
- » 2D cloud models
- » 3D cloud models
- » Example of modeling system for research and forecasting sy
- » Summary

INTRODUCTION

Diversity of models that predict cloud properties, with wide range of resolutions and of levels of detail

Example: High-resolution (dx = 2 km) cloud-resolving model of aerosol-cloud interaction with 6 species of aerosol and 2-moment bulk microphysics (Phillips et al. 2009)

Example: Regional model (dx = 50 km) of Pacific and Americas, with similar Phillips scheme of aerosol-cloud interaction, for prediction of properties of large-scale clouds (Lauer et al. 2009)

0-D CLOUD MODELS

0D parcel models

- » Parcel = buoyant element of air with size and shape unspecified
- » Assumptions that parcel:
 - maintains its identity in thermodynamic processes
 - Does not disturb or interact with environment
 - Has uniform properties
 - Its pressure is always equal to that of ambient air

Adiabatic parcel model

»
$$\frac{d^2 z}{dt^2} = F_B = \frac{gT'}{T_0}$$

» $\frac{d\theta_e}{dt} = 0$

Example:

$$wdw = F_B \Longrightarrow w^2 = w_{cb}^2 + 2 \int_{z_0}^z F_B dz$$
$$w_{max} = \sqrt{2 \ CAPE}$$
$$CAPE = \int_{LFC}^{ct} F_B dz$$

» Optionally, moisture too:

$$> \frac{dQ_{v}}{dt} = S_{v}$$

$$> \frac{dQ_w}{dt} = S_w$$

$$> \frac{dQ_r}{dt} = S_r - Q_r / \tau_{fall}$$

Adiabatic parcel model

$$\begin{split} & \stackrel{d^{2}z}{dt^{2}} = F_{B} = \frac{gT'}{T_{0}} \\ & \stackrel{d\theta_{e}}{dt} = 0 \\ & \stackrel{w_{max}}{dt} = \frac{\sqrt{2} CAPE}{CAPE} \\ & \stackrel{w_{e}}{dt} = \theta_{e}(T,p) \Rightarrow T = \dots \end{split}$$
 Example:

$$\begin{aligned} & wdw = F_{B} \Rightarrow w^{2} = w_{cb}^{2} + 2 \int_{z_{0}}^{z} F_{B} dz \\ & \stackrel{w_{max}}{dt} = \sqrt{2 CAPE} \\ & CAPE = \int_{LFC}^{ct} F_{B} dz \end{aligned}$$

» Assuming water saturation (conserve $Q_T = Q_v + Q_w$):

$$> \frac{dQ_T}{dt} = -S_r$$

$$\gg Q_w = Q_T - Q_{v,s}$$

$$\gg \frac{dQ_r}{dt} = S_r - Q_r / \tau_{fall}$$

Entraining parcel model (e.g. Donner 1993)

» Entrainment rate $=E = \frac{1}{m} \frac{dm}{dt} \sim constant$

$$> \frac{d^2z}{dt^2} = g\left(\frac{T_v'}{T_0} - Q_w - Q_r\right) - E w$$

$$> \frac{dQ_T}{dt} = -S_r - E Q_T'$$

$$Q_w = Q_T - Q_{v,s}$$

$$> \frac{dQ_r}{dt} = S_r - EQ_r - \frac{Q_r}{\tau_{fall}}$$

$$> \frac{d\theta_e}{dt} = -E\theta_e'$$

1-D CLOUD MODELS

Vertical 1-D draft

- Include interaction between dynamics and microphysics (e.g. Srivastava 1967)
- » Approach: solve Boussinesq eqns for conservation of momentum, heat, and mass of moisture for vertical motion

$$\frac{DU}{Dt} = g\left(\frac{T_{v}}{T_{0}}' - Q_{w} - Q_{r}\right)$$
$$\frac{DQ_{v}}{Dt} = S_{v} = E_{v}$$
$$\frac{DQ_{w}}{Dt} = S_{w} = -E_{v,1} - P$$
$$\frac{DQ_{r}}{Dt} + \frac{1}{\rho_{0}}\frac{\partial}{\partial z}\left(\rho_{0}Q_{r}V\right) = S_{r} = -E_{v,2} + P$$
$$\frac{DT}{Dt} = -U\Gamma_{s} - LE_{v}/c_{p}$$

 $\frac{D}{DT} \equiv \frac{\partial}{\partial t} + U \frac{\partial}{\partial z}$

Evaporation (or condensation) $E_{v} = E_{v,1} + E_{v,2}$

Bulk microphysics

- » Kessler (1969) analysed drop size distributions (DSDs)
- » By approximating a mathematical form for DSDs (e.g. exponential), he derived:
 - » Evaporation (or condensation)
 - » Average fall-speed, V
 - » Precipitation production, P,
 - Some cloud-water converts spontaneously to rain when a threshold on Q_w is exceeded

$$E_{\nu} = E_{\nu,1} + E_{\nu,2}$$

Bin microphysics: more accuracy in treatment of coagulation and sedimentation

- » Danielson et al. (1972) explicitly accounts for DSDs and for ice size distributions
 - Stochastic coalescence predicted bin by bin
 - Concentration is explicitly predicted in each of many categories arranged logarithmically over size
 - » water drops: from 2 microns to 2.5 mm
 - » Ice: up to 20 mm

Results: Case Study

- » Example: shower, a convective cell, warm climate (Srivastava 1967)
- » In first 10 mins, rain develops at expense of cloud-liquid, forming first near cloud-top
 - Updraft starts weakening, due to burden of rain

NÆ

- » After about 20 mins, rain has descended, forming downdraft at low levels
 - updraft strenthens again

Overview of 1D models

- »Advantages:
 - Interaction of dynamics and microphysics treated
 - Computationally cheap
 - Good for analysis of microphysical processes

»Disadvantages

- Crude treatment of dynamics (no shear)
- In reality, vertical shear controls storm structure, and there are downdrafts flanking updraft

2D CLOUD MODELS

- » Approach: solve Boussinesq equations for conservation of momentum, heat, and mass of air and moisture on a vertical grid (x,z)
 - Density constant, $\rho_0(z)$, except for F_B (Boussinesq)
 - Include convergence of turbulent fluxes, F
 - Treat pressure and temperature as sum of basic state $(p_0(z), T_0(z))$ and a perturbation (p'(x, z, t), T'(x, z, t))
 - Convection started by warm bubble initially

$$\frac{D}{DT} \equiv \frac{\partial}{\partial t} + u \frac{\partial}{\partial x} + w \frac{\partial}{\partial z}$$

$$\frac{Du}{Dt} = F_u - \frac{1}{\rho_0} \frac{\partial p'}{\partial x}$$

$$\frac{Dw}{Dt} = g\left(\frac{T_{v}'}{T_{0}} - Q_{w} - Q_{r}\right) + F_{w} - \frac{1}{\rho_{0}}\frac{\partial p'}{\partial z}$$

$$0 = \frac{\partial(\rho_0 u)}{\partial x} + \frac{\partial(\rho_0 w)}{\partial z}$$
$$\frac{DT}{Dt} = -\Gamma_s w + F_T + S_T$$

$$\frac{DQ_v}{Dt} = S_v + F_v$$

$$\frac{DQ_w}{Dt} = S_w + F_w$$

$$\frac{DQ_r}{Dt} + \frac{1}{\rho_0} \frac{\partial}{\partial z} (\rho_0 Q_r V) = S_r + F_r$$

Results: Case Study

- » Takeda (1971) used above 2D model but with bin microphysics, treating stochastic coalescence and breakup
- » Type 1: weak vertical shear, moderate instability
 - Clouds develop in-cloud downdraft due to precipitation burden and evaporative cooling
 - Cold pool near surface spreads and triggers new cell

NÆ

- New clouds develop around dissipating cloud
- » Type 2: strong shear, moderate instability
 - Downdraft forms on downshear side
 - No new cells triggered, cloud is short-live

Overview of 2D model

»Advantages:

 Effects from vertical shear on longevity and intensity of storm simulated

- Cheaper than 3D

» Disadvantages:

- Vertical motions grossly distorted
- Vertical pressure pertubation forces grossly overestimated
 Turbulence
 Forecasting ?

3D CLOUD MODELS

Need for 3D model for realism

» In reality,

- wind speed and direction change with height:
- Vortices are advected, tilted and stretched in 3D (e.g. tornadoes), updrafts rotate
- Outflow in downdrafts can interact with ambient flow, foming multicell storms

(near

- PPGF and updraft speeds differ between 20 and
- Clouds act as barriers to ambient flow at some steering) levels, move with the wind at other levels

» Approach: solve numerically 3D version of Boussinesq equations for 2D models

$$\frac{D}{DT} \equiv \frac{\partial}{\partial t} + u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} + w \frac{\partial}{\partial z}$$

Results:

- Splitting of supercells simulated by Wilhelmson and Klemp (1978)
 - Sensitivity test shows splitting is due to rain
 - Right-moving storms are more common after splitting (than left-moving ones) because ambient flow turns clockwise with height usually

» Low-level convergence due to downdrafts sustains the storm and the downdrafts are promoted by mid-level inflow from south, which is linked to such a sounding

» Tornadoes simulated and explained in terms of intensification of mesovortex (Klemp *et al.* 1987

EXAMPLE OF MODELING SYSTEM FOR RESEARCH AND FORECASTING

Example of 3D model: Weather, Research and Forecasting (WRF)

Outline of WRF

- Two forms of WRF:
 - Advanced Research WRF (ARW)
 - Non-hydrostatic Mesoscale Model (NMM)
- Both are Eulerian mass dynamical cores
 - terrain-following vertical co-ordinates
 - non-hydrostatic (sound and gravity waves may be included by high-resolution solution of ODEs)
- Pressure closely related to their vertical co-ordinate
- Pre-processing, main model running and postprocessing elements in both

Components of WRF modeling system

Initialisation of WRF simulation

- WRF Pre-processing System (WPS) prepares data for a run
 - Real observational data interpolated by WPS onto model grid, if numerical weather prediction (NWP) runs are to be done
- WRF Model also prepares the data for a run ("real.exe" and "ideal.exe") :
 - Hydrostatic balance of data on model grid
 - Creates data-files for lateral and initial boundary conditions

Components of WRF modeling system

WRF Model run and postprocessing:

- WRF Model(ARW or NMM) solves ODEs of physical and dynamical laws so as to simulate the atmosphere ("wrf.exe")
 - reads in input data (processed previously), and initialises variables/arrays
 - Integrates ODES, creating output

Graphics and Verification tools

• (e.g. RIP4, WPP, NCL)

Map of WRF modeling system

Dynamics of ARW WRF Model

Key features:

- Fully compressible, non-hydrostatic (with hydrostatic option)
- Mass-based terrain following coordinate, η

$$\eta = \frac{(\pi - \pi_t)}{\mu}, \qquad \mu = \pi_s - \pi_t$$

where π is hydrostatic pressure, μ is column mass

Arakawa C-grid staggering

WRF as cloud model

Phenomena occur on many scales, some too small to resolve on model grid

WRF AS CLOUD-SYSTEM RESOLVING MODEL (CSRM)

NOT RESOLVED BY WRF 's RESOLUTION OF $\Delta X = 2 \text{ km}$

WRF as regional model

Phenomena occur on many scales, some too small to resolve on model grid

Map of parameterizations when all are used (e.g. WRF as regional model)

WRF Parametrisations: Radiation

Radiative Transfer in Atmosphere:

 Models always treat solar (shortwave [SW]) and terrestrial (longwave [LW]) radiation from Sun and Earth separately, since there is no overlap

Options: microphysics schemes

Multiple species of hydrometeor

Example: Morrison scheme

- Usual 5 species of hydrometeor:
 - Cloud-ice, snow, graupel, cloud-liquid, rain
- 2-moment treatment of some species
 - x-th species has a size distribution, dN_x (#/m3) = $n_x(D) dD$
 - both total mass and number of particles, per m³, are predicted
 - $N_x = \int n_x dD$ (0-th moment)
 - $Q_x \propto \int D^3 n_x dD$
 - Prediction of N_x and Q_x

- (3rd moment)
- mean size of particles and n_x predicted
- Advantage of 2-moment approach: in nature, cloud properties determined by mean size of cloud-particles Cloud properties are predicted

PBL scheme (e.g. *bl_pbl_physics* = 1): vertical turbulent fluxes of heat and moisture

SUMMARY

- » Complex mechanisms elucidated by models
- » Parcel models can elucidate microphysical processes
- » 1D, 2D and 3D models include an increasing range of mechanisms
- » Modeling systems (e.g. WRF) have flexibility for choice of any resolution and of corresponding parameterizations / * s

Example: Very high resolution (about 0.5 km) 2D model with bin microphysics

- explicit prediction of size distributions and cloud-processes

New transformation of hydrometeors during hail formation in HUCM:

Dynamics of ARW WRF Model

Key features:

- 3rd-order Runge-Kutta time integration scheme
- High-order advection scheme
- Scalar-conserving (positive definite option)
- Complete Coriolis, curvature and mapping terms
- Two-way and one-way nesting

Dynamics of ARW WRF Model

Key features:

- Choices of lateral boundary conditions suitable for real-data and idealized simulations

 Specified, Periodic, Open, Symmetric, Nested
- Full physics options to represent atmospheric radiation, surface and boundary layer, and cloud and precipitation processes
- Grid-nudging and obs-nudging (FDDA)
- New Digital Filter Initialization option

- » Type 3: low-level jet, with strong opposite shears above and below it
 - Precipitation and updraft are both inclined in direction of lowlevel shear at low levels,
 - Updraft has opposite tilt aloft
 - Cold pool from downdraft spreads out, triggering ascent pear base of original updraft
 - Long-lived cloud

» Other 2D models: Farley and Orville (1986), Khan et al.

Turbulence

- When fluid flow is turbulent, its elements move irregularly and do not follow the direction of the mean flow
- Turbulent eddies cause random fluctuations of advected quantities around their mean (< >) values

 $X = \langle X \rangle + X'$ MEAN (e.g. EDDY (e.g. SUB-RESOLVED GRIDSCALE) ON GRID)

- Turbulence involves interactions and exchange of energy between motions of different scales
- Momentum equation, $Dv_{H}/Dt = \Sigma_{i} F_{i}$ can be modified for grid-box average quantities, with an extra eddy stress term:

(PARAMETERIZATION)

• $D < \mathbf{v}_H > /Dt = \Sigma_i < F_i > + (1/\rho) \partial [\rho < w' \mathbf{v}_H' >] / \partial z$ EFFECT FROM SUB-GRIDSCALE TURBULENCE

RESOLVED ON GRID

- Similarly, the (1st Law) energy eqn, $D\theta/Dt = \Sigma_i S_{i}$, becomes
 - $D < \theta > /Dt = \Sigma_i < S_i > + (1/\rho) \ \partial [\rho < w' \theta' >] / \partial z$ RESOLVED ON GRID EFFECT FROM SUB-GRIDSCALE TURBULENCE (PARAMETERIZATION)
- Vertical turbulent fluxes of heat and momentum are $\rho < w' v_{H}' >$ and $\rho < w' \theta' >$
- Turbulent mixing transports heat and momentum down the gradient of mean temperature and mean momentum

•
$$\rho < w' v_H' > \sim -\rho K_m \partial < v_H > / \partial z$$

•
$$\rho < w' \theta' > \sim -\rho K_h \partial < \theta > / \partial z$$

- PBL/turbulent mixing parameterizations predict $K_{m/h}(z)$ and the turbulent fluxes of heat, moisture and momentum
 - K varies strongly with z in surface layer (lowest 10% of PBL)
 - In surface layer: $K_m \propto \partial < v_H > / \partial z$ and $K_h \propto \partial < \theta > / \partial z$