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Abstract In this paper, we review some critical issues
regarding carbon cycling in Amazonia, as revealed by
several studies conducted in the Large Scale Biosphere
Atmosphere Experiment in Amazonia (LBA). We eval-
uate both the contribution of this magnificent biome for
the global net primary productivity/net ecosystem ex-
change (NPP/NEE) and the feedbacks of climate change
on the dynamics of Amazonia. In order to place
Amazonia in a global perspective and make the carbon
flux obtained through the LBA project comparable with
global carbon budgets, we extrapolated NPP/NEE val-
ues found by LBA studies to the entire area of the
Brazilian Amazon covered by rainforest. The carbon
emissions due to land use changes for the tropical re-
gions of the world produced values from 0.96 to
2.4 Pg C year�1, while atmospheric CO2 inversion
models have recently indicated that tropical lands
in the Americas could be exchanging a net
0.62±1.15 Pg C year�1 with the atmosphere. The dif-

ference calculated from these two methods would imply
a local sink of approximately 1.6–1.7 Pg C year�1, or a
source of 0.85 ton C ha�1 year�1. Using our crude
extrapolation of LBA values for the Amazon forests
(5 million km2) we estimate a range for the C flux in the
region of �3.0 to 0.75 Pg C year�1. The exercise here
does not account for environmental variability across
the region, but it is an important driver for present and
future studies linking local process (i.e. nutrient avail-
ability, photosynthetic capacity, and so forth) to global
and regional dynamic approaches.

Keywords Amazonia Æ Carbon cycle Æ Deforestation Æ
Climate changes

Introduction

The sources and magnitudes of the major drivers of the
global carbon cycle have changed since the beginning of
last century, when the atmospheric carbon dioxide
concentration started to rise consistently due to global
emissions from fossil fuel and biomass burning (Schimel
1995). In the last few decades, a series of studies started
to lay out the processes that could account for the fate of
this additional carbon introduced into the atmosphere.
However, the sum of fossil fuel and biomass burning
emissions is higher than the balance of the carbon
dioxide accumulated in the atmosphere and absorbed by
the ocean and terrestrial biomes (Houghton et al. 1998).
This budget mismatch between global sources and sinks,
initially called ‘‘the missing carbon sink’’, led to years of
arguments about where the unaccounted sink could lie.
Some hypotheses considered that the oceans could take
more carbon dioxide than originally thought (Bousquet
et al. 2000; Tans et al. 1990; Conway et al. 1994; Ciais
et al. 1995). Others considered that the missing carbon
was taken up by terrestrial ecosystems, via photo-
synthesis, but there were considerable difficulties in
calculating precisely how much (Fan et al. 1998).

Communicated by Jim Ehleringer

J. P. H. B. Ometto (&) Æ L. A. Martinelli
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Additionally, global modeling studies have also calcu-
lated an increase in the rate of atmospheric CO2 accu-
mulation throughout the past century (Cox et al. 2000;
Itoand Oikawa 2000; White et al. 2000).

The tropical rain forest biome plays an important
role in the global carbon budget (Melillo et al. 1993;
Dixon et al. 1994; Field et al. 1998), but there is great
uncertainty about the ecosystem’s current and future
impact on atmospheric CO2 accumulation (Tian et al.
2000; Schimel et al. 2001; Cox et al. 2000). There is no
clear understanding of how the carbon balance of
tropical forests responds to rapid, on-going changes in
climate and atmospheric composition (Gash et al. 2004).
In addition, more studies relating the role of nutrient
limitation, such as nitrogen and phosphorus, to ecosys-
tem carbon uptake (Vitousek 1984; Vitousek et al. 1986;
Chadwick et al. 1999) are needed. Based on the records
of atmospheric CO2 concentrations and carbon isotope
ratios (13CO2), Townsend et al. (2002) suggested a siz-
able terrestrial carbon sink in tropical latitudes for a
period from 1991 to 2000.

Climate forcing, such as changes in precipitation
(Marengo et al. 2001) and radiation (Procópio et al. 2004)
also play a key role on future carbon exchange scenarios.
With continuing global warming, significant changes in
water regimes could influence carbon budget in tropical
forests (Victoria et al. 1998; Malhi and Wright 2004). A
better understanding of the nonlinear and complex inte-
grated effects of nutrients, climate, and hydrology on
carbon cycling is needed to improve global processmodels
being used to project future atmospheric CO2 levels and
climate (Prentice et al. 2001; Cox et al. 2000).

Since the 1980s, there was a large increase in tropical
deforestation followed by biomass burning. The carbon
dioxide released from this burning has become critical for
the global carbon balance equation. The role of the
Amazon region, the largest continuous area of tropical
forest in the world, came to the foreground in the global
carbon quest. Several studies began estimating the area
and rate of deforestation. The use of different remote
sensing techniques to calculate the extent of the defor-
ested areas produced heated controversy (Fearnside
1996), but considerably improved our understanding of
the magnitude and rates of this process in this region
(Fearnside 1997; Houghton et al. 2000). The average
deforestation rate for the nineties was 17,000 km2Æyear�1,
increasing to approximately 25,000 km2 in 2002 and 2003
(INPE 2004). By 2004, an estimated of 16.32% of the
total Brazilian Amazon area (5.8 million km2) will be
deforested (INPE 2004). Most of this process is concen-
trated in the southern and eastern part of Amazonia,
while the central, less accessible areas, are relatively
protected. However, recent government plans for paving
roads and developing infrastructure (Laurance et al.
2001), associated with increasing presence of highly
capitalized agribusiness companies, threat central areas
in a very near future (Soares-Filho et al. 2004).

Our understanding of the probable fate of the
‘‘missing’’ carbon had progressed considerably towards

the end of the 1990s, with evidence indicating that sec-
ondary forest regrowth in temperate forests was con-
tributing to the terrestrial C sink. Also, extensive field
studies, mainly in temperate terrestrial ecosystems, and
large scale atmospheric surveys, associated with model-
ing efforts, indicated that the actual atmospheric carbon
dioxide concentration, combined with excess nitrogen
deposition, could be fertilizing ecosystems and increas-
ing the carbon uptake through photosynthesis (Schimel
1995; Tans et al. 1998). However, the precise location
and magnitude of these sinks remained unknown. This
led to several studies focusing on the potential distri-
bution of terrestrial sinks (Friedlingstein et al. 1995;
Melillo et al. 1996; Thompson et al. 1996; McGuire et al.
1997). Due to their high biomass density, tropical forests
were a natural candidate for a large sink component.
Several modeling studies clearly supported this hypoth-
esis (Friedlingstein et al. 1995; Melillo et al. 1996;
Thompson et al.1996; McGuire et al.1997). Therefore,
Amazonia was considered to be a potentially significant
player in the global carbon cycle as either a sink or
source, mainly due to the large amount of carbon stored
in its biomass and large annual fluxes from photosyn-
thesis, respiration, decomposition and fire.

The Brazilian scientific community realized that it
was time to develop a large integrated program devoted
to studying ecological functioning of the Amazon re-
gion, especially considering its role in the modern car-
bon cycle. This was promptly supported by American
and European colleagues. In 1997, the Large Scale
Biosphere–Atmosphere Experiment in Amazonia
(LBA), a Brazilian-led, multinational study of the
interactions between the Amazonian region and the
global climate system, was officially launched. Two
major questions drove LBA investigations: (1) how does
Amazonia currently function as a regional entity? (2)
how will changes in land use and climate affect the
biological, chemical, and physical functions of Amazo-
nia, including the sustainability of development in the
region and the influence of Amazonia on Global cli-
mate? (http://lba.inpa.gov.br/lba)

The long-lasting ecological paradigm, that mature
tropical forests should be at climax, i.e. over time the net
gain of carbon should near zero, presumed the existence
of a dynamic mass balance in old growth forests.
However, the first conclusive direct measurements of
ecosystem CO2 exchange conducted in Amazonia using
eddy covariance technique (Grace et al. 1995a, b; 1996;
Malhi et al. 1998), suggested a large net carbon uptake
of 1–6 t C ha�1 year�1. Therefore, the presumption of
mass balance in primary forests was under question.
These first measurements led to the speculation of
whether pristine Amazon forests could be functioning as
a giant carbon sink. An unforeseen sink in the tropical
forests of the world, and in Amazonia in particular,
could resolve the geographical mystery of the missing
carbon sink. However, many researchers were skeptical
about the magnitude of the sink predicted by these early
eddy flux data. As a result, an intense review of the eddy



covariance method, including the applicability of scaling
from the measuring site to the region, was initiated. This
ongoing review has already pointed to difficulties in
measuring CO2 emissions in the very stable atmosphere
that develops in tropical forests (Kruijt et al. 2004;
Baldocchi et al. 2000), and shown large local heteroge-
neity of ecosystems (Araujo et al. 2002; Saleska et al.
2003). In parallel, a large effort in compiling long-term
biomass changes in forest stands across the Amazon and
around the tropical world sought to ascertain the sink or
source status of carbon in primary forest vegetation
(Phillips et al. 1998). These efforts were not yet clarified
beyond doubt the overall role of Amazonia as a sink or
source.

The main objective of this paper is to provide a
critical overview of facts and uncertainties, and raise
potential implications of what we have learned so far
regarding the role of Amazonia in the modern carbon
cycle. We will start with a review of the extent of
deforestation in Amazonia, including estimates of how
much carbon was released into the atmosphere through
land use changes. This will be followed by a review of
methods used to estimate the net ecosystem exchange
(NEE) in the region, and ecological implications of the
estimates found thus far.

Amazonia: the modern carbon budget and deforestation

One of the most recent equations for the global carbon
budget proposed by House et al. (2003) during the 1990s
showed the following numbers.

– Emissions mainly from fossil fuel burning:
+6.3±0.4 Pg C year�1

– Emissions due to land-use change: +1.4–
3.0 Pg C year�1

– Atmospheric increase: +3.2±0.1 Pg C year�1

– Ocean–atmosphere flux: �2.1±0.7 Pg C year�1

– Land–atmosphere flux: �1.0±0.8 Pg C year�1

– Residual terrestrial sink: �1.6 Pg to
�4.8 Pg C year�1

As mentioned earlier, tropical forests are probably
the only major biome that may play an important role in
both sides of the global carbon balance budget shown
above. For instance, the Amazon forest vegetation in
Brazil alone contains about 70 Pg of carbon, which
amounts to between 10% and 15% of global terrestrial
biomass (Houghton et al. 2001). Overall, causes for
deforestation in tropical areas are numerous and com-
plex, most of them linked to economical and social
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Fig. 1 a Deforestation rate in
the Brazilian Amazonia in
Km2Æyear�1. Analysis using
Landsat images by INPE/
IBAMA (http://www.inpe.br).
b Number of hot spots in
Amazonia, from 1999 to 2003.
Data obtained by INPE/
IBAMA using the satellite
NOAA 12, passing over
Amazonia at 21:00 GMT



processes (see Hecht 1993; Margulis 2003; Nepstad et al.
2002; Walker and Moran 2000; Andersen et al. 2002).
Road construction in pristine areas, cattle ranching,
logging and agriculture are the main economic activities
leading to deforestation (Nepstad et al. 2001). Recently,
Hirsch et al. (2004) proposed the carbon and land-use
change (CARLUC) model and calculated a cumulative
carbon release to the atmosphere due to deforestation of
�7 Pg C for the period from 1970 to 1998 in the Bra-
zilian Amazon. This expansion of deforested areas re-
flected a large population increase in the region, from
about 100,000 in 1840 to 1.5 million in 1940, up to about
18 million nowadays (Instituto Brasilieiro de Geografia
e Estatı́stica, IBGE; http://www.ibge.gov.br, Brazil),
with more than 50% of people living in villages and
cities (Browder and Godfrey 1997).

According to measurements based on satellites ima-
ges (http://www.inpe.br) the deforested area in the
Brazilian Amazon was approximately 600,000 km2 in
August 2002. The Instituto Nacional de Pesquisas Es-
paciais (INPE) defines deforestation as ‘‘the conversion
of primary forest areas by human activities for the
development of agriculture and/or cattle ranching
activities, as detected by orbiting satellites’’. Another
way to measure the deforested area is through ground-
based land surveys done by IBGE Agricultural Census
in Brazil. Andersen et al. (2002) presented an interesting
comparison between these two methods. Estimations of
deforested areas were generally larger based on surveys
than when estimated by satellite data, probably because
satellites detect gross deforestation and whereas surveys
record the net deforestation, taking into account the re-
growth of secondary forests (Andersen et al. 2002;
Margulis 2003). Most of the deforestation occurs in
primary forests, with grasses as the main replacing
vegetation. Margulis (2003) suggested that planted pas-
tures covered approximately 70% of the deforested area
in Amazonia. Considering that fallow areas are used
also for pasture, this estimate increase to almost 90%. It
is also a consensus that most of the deforestation occurs
along roads (Nepstad et al. 2001; Carvalho et al. 2001).
Chomovitz and Thomas (2001) have calculated that

75% of all deforestation occurred within a 25 km-wide
swath along the roads.

The first deforestation survey was carried out by
INPE in 1977, and the second 10 years later (1988), after
which annual surveys were performed. For the period
1977–1988, the average deforestation rate was close to
21,000 km2 year�1 (Fig. 1). In the subsequent years, this
rate dropped to a minimum of 11,000 km2 year�1,
increasing again and reaching a record of almost
30,000 km2 year�1 in 1994/1995. For several years
thereafter the rates decreased and stayed relatively
constant, at around 17,000–18,000 km2 year�1, increas-
ing again to 25,000 km2 year�1 in the 2001–2003 period
(Fig. 1b).

Four States of the so-called Brazilian Legal Amazon
were responsible for more than 80% of deforestation
(Fig. 2). One of the explanations for this trend lies in the
greater exposure of the forest in its eastern and southern
fringes to access from northeastern and southern regions
of Brazil. Policies for occupation and development
established by the military government in the 1970s and
1980s generated several destructive actions in the forest.
Nowadays, the State of Mato Grosso has the biggest
gross agricultural production in Brazil. In Pará and
Maranhão States the expansion of soy bean agriculture
is pushing cattle ranching still further into the forests.
Road construction and paving have also allowed a fast
expansion of deforestation in Rondônia and Acre.

Satellite observations of local regions of heat, or ’hot
spots’, created by the burning of cleared vegetation, are
used as a proxy for deforestation in the region (Fig. 3)
(http://www.inpe.gov.br). Maranhão State showed the
lowest deforestation rates (Fig. 4), most likely because
the bulk of deforestation in this State occurred prior to
the start of monitoring in 1977. The highest rates of
deforestation were observed in Mato Grosso State,
mainly after 1990/1991 (Fig. 4), although the largest
deforested area is located in Pará State. During the
1994/1995 burning season, the largest deforestation rate
was observed indicating that, whatever caused this peak,
it was a phenomenon observed all over the region
(Fig. 4) (http://www.inpe.gov.br.).
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Estimates of deforestation provide only one com-
ponent to assess carbon emissions. One also needs to
know the standing biomass and the fraction of bio-
mass released through burning immediately and also
slowly over time. The difficulties and uncertainties of
biomass estimates in tropical forests will be discussed
in a later section of this article. Here, we will only
summarize the available information in order to
illustrate our lack of knowledge on quantifying this
parameter, and how it affects estimates of carbon
emissions.

Houghton et al. (2001) summarized 44 sites in
Amazonia where biomass was measured. They found a
range of above-ground live biomass from 95 ton ha�1

to 413 ton ha�1. One year later, Chambers et al.
(2001b) made one of the most popular allometric
equation available for the Amazon basin. This equa-
tion was obtained in central Amazonia, near the city of
Manaus by harvesting 315 trees distributed in five plots
of 0.04 ha each. This equation and others were used by

Baker et al. (2004a, b) to estimate the above-ground
biomass in 59 forest sites. They found values varying
from 124 ton ha�1 to 320 ton ha�1 across several
transects. Houghton et al. (2001) summarized data
from seven different biomass estimates for the Brazilian
Amazonian forest and showed an average of
269±86 ton ha�1. The original biomass estimate
by Baker et al. (2004a, b) found 282±57 ton ha�1,
approximately 4% lower than the average value
determined for measurements conducted 7–10 years
later, at the same plots (294± 55 ton ha�1). Pooling
both data sets together, the average of aboveground
biomass in Amazonia can be estimated as
283±66 ton ha�1. The frequency distribution of the
aboveground biomass estimates can be seen in Fig. 5.
Houghton et al. (2001) also summarized estimates for
aboveground dead biomass and below ground biomass
(live and dead not distinguished), representing 9% and
21% respectively of the total forest above ground live
biomass. Therefore, adding 30% (accounting for dead

Fig. 3 Lower panel a satellite
image of Brazilian Legal
Amazonia with focus of heat in
the 1998 burning season (http://
www.ibama.gov.br). The stars
markers indicate eddy
covariance towers sites. Upper
panel map of Brazil with State
divisions. In gray the four states
where deforestation is more
intense
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Fig. 4 Deforestation rates in
the four main States of the
Brazilian Amazonia region.
These four States contributes
with more than 80% of
deforestation in the region
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and bellow ground biomass) to the living aboveground
biomass the estimated average for the total ecosystem
biomass would yield from 126 ton ha�1 to
537 ton ha�1 in the Amazonian forests.

Considering the rates of deforestation between 1988
and 1998, the total biomass of Brazilian Amazonian
forest, and the amount of carbon stored in the re-
growing vegetation, it was possible to estimate the an-
nual emission of carbon to the atmosphere. The average
flux for this period was 0.18±0.08 Pg C year�1

(Houghton et al. 2000). If one accounts for logging
activities and natural fires, the range of emissions can be
calculated as 0.10–0.40 Pg C year�1 (Houghton et al.
2000). This range would account for approximately 15–
65% of the higher estimates of carbon emission for
Tropical Latin America in the 1990s (0.62 Pg C year�1),
and for 7–30% of the upper estimates of carbon emis-
sion for tropical areas globally (1.62 Pg C year�1) for
the same period (DeFries et al. 2002). The global emis-
sions due to land-use changes varies from
1.4 Pg C year�1 to 3.0 Pg C year�1, considering the last
estimate of 2.18 Pg C year�1 made by Houghton (2003),
the land-use change in Amazonia would be responsible
for approximately 5–20% of global emissions. The
Amazon region (�7.0 million km2) covers an area
equivalent to 4.7% of the terrestrial area of the planet
(150 million km2). Assuming that deforestation has al-
ready burned approximately 9% (0.6 million km2) of
the region implies that an area equivalent to approxi-
mately 0.40% of the planet should be responsible for a
significant share of the global carbon emissions due to
land-use changes.

Indirect effects of Amazonian deforestation
on atmosphere composition and land–atmosphere
carbon exchange

Changes in atmospheric composition—radiation
and precipitation

Deforestation affects the atmosphere in several ways.
First, there is a change in the energy and water balance
when forest is replaced by pasture and this change has
the potential to alter the atmospheric water content and
precipitation patterns (Silva Dias et al. 2002). Second,
when forests are cut and burned, large amount of par-
ticles and reactive trace gases are released into the
atmosphere. This can lead to profound changes in the
atmospheric composition (Andreae et al. 2002).

Most global circulation models simulated a decrease
in the precipitation over Amazonia as a result of
deforestation (Marengo and Nobre 2001), but these
models have a very coarse resolution, and local pro-
cesses and interaction between the land and atmosphere
due to heterogeneity of the landscape cannot be properly
assessed. New high-resolution mesoscale models were
used to investigate the impact of land use change in
Amazonia (Avissar et al. 2002), and they also simulated
a decrease in precipitation due to deforestation. How-
ever, one recent study suggested that deforestation in
portions of the region can lead to locally increased
precipitation (Baidya Roy and Avissar 2002). This raises
the hypothesis that there is a threshold of extent and
distribution deforestation that leads to a precipitation
decline (Avissar et al. 2002).

In addition to changes in the overall amount of pre-
cipitation, models have demonstrated that the patterns
of precipitation over Amazonia are changing due to
deforestation. Under forested conditions, low concen-
trations of aerosol particles prevail in Amazonia and a
maritime-type cloud regime is formed in the region
(Williams et al. 2002). This phenomena inspired atmo-
spheric scientists to nickname Amazonia as the ‘green
ocean’ (Andreae et al. 2004). Due to biomass burning,
the aerosol concentration increased abruptly in some
regions of Amazonia (Artaxo et al. 2002).

It is becoming clear that the Amazonian ecosystem is
very sensitive to global climate forcing agents such as El
Niño, regional changes in precipitation patterns and
global warming (Marengo and Nobre 2001). Fire risk is
among those sensitive to climate, but fire is also affected
by management (Nepstad et al. 2001). The potential for
fire to spread from deforested areas into fragmented
forests represents a threat to long-term ecosystem health
and sustainability (Cochrane et al. 1999; Cochrane and
Laurance 2002). Logging thins the canopy, increases
sunlight penetration to the understory and facilitates
burning of the forest floor. After an Amazonian forest
stand burns once, the reduced canopy cover and in-
creased penetration of solar radiation increases the
probability that fire will be able to spread through the
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stand again (Cochrane et al. 1999). The interactions of
climate, management and fire susceptibility produce
several mechanisms of positive feedback that may lead
to further forest degradation, fire risk, and negative
economic and human health consequences (Nepstad
et al. 2001).

Emissions of volatile organic carbon

Tropical forests release substantial quantities of biogenic
volatile organic compounds (VOCs) to the atmosphere
(Guenther et al. 1995). VOC release is important to the
ecosystem carbon balance (Crutzen et al. 1999; Kes-
selmeier et al. 2002a). A full accounting of the influence
of VOCs on ecosystem carbon budgets must consider
both sources and sinks for these compounds and the
reaction products of VOCs including atmospheric par-
ticulates. One of the key issues here is the large biodi-
versity of Amazonia, because VOC emissions (such as
isoprene and a-pinene emissions) are specie-dependent
(Guenther et al. 1995). Greenberg et al. (2004) and
Harley et al. (2004) employed tethered balloon and leaf
measurements approach to study the distribution of
VOCs in Amazonia. Similar to the threefold variation
that Malhi et al. (2004) reported for woody biomass
production across the basin, these authors found a
threefold variation in emission rates of VOCs across
different regions, and they attributed this variation to
diverse species composition. Also significant seasonal
variability is found, with Kuhn et al. (2002, 2004)
reporting up to a twofold difference in isoprene emis-
sions between wet and dry seasons in Rondônia. Due to
diversity of environments and species richness, we can
expect to find similar variability in other regions in
Amazonia.

Canopy emissions of VOCs amount to a few percent
of net primary productivity (Guenther 2002; Kesselme-
ier et al. 2002a; Wiedinmyer et al. 2004), but their effects
on atmospheric chemical processes and physical climate
processes far exceed their modest contribution to the C
cycle. Recently, Clayes et al. (2004) showed that isoprene
emissions in Amazonia could make up a significant
fraction of cloud condensation nuclei and thus have a
role in precipitation patterns. Biogenic hydrocarbons are
critically important in the regulation of concentrations
of ozone, hydroxyl radical and other important trace
gases and radicals in tropical atmospheric chemistry
(Andreae et al. 2001). Terpenes are precursors of radi-
ation forcing aerosol particles, which also act as cloud
condensation nuclei, but terpene concentrations amount
to only a few parts per billion in several sites in
Amazonia (Kesselmeier et al. 2002b). Still, part of the
precipitation formation mechanism could be controlled
by the vegetation itself through isoprene and terpene
emissions (Artaxo et al. 2002; Clayes et al. 2004). Hence,
links between the biosphere and the atmosphere appear
to be extremely complex, with climate affecting VOC
emissions and vice versa in a highly non linear process

(Kesselmeier et al. 2000, 2002a, b; Wiedinmyer et al.
2004).

Measurements of carbon exchange at the ecosystem level

Eddy covariance studies

The accurate measurement of trace gas exchange at the
Earth’s surface is important in order to evaluate eco-
system functioning and to show environmental and
process changes such as CO2 fluxes, climate fluctuation,
atmospheric chemistry, or nutrient cycling. Among
several techniques the eddy correlation, or eddy
covariance, is one of the most direct and useful. Eddy
correlation can be used to validate surface vegetation–
atmosphere transfer schemes, and thus improve climate
and ecosystem predictability. The exchange rate of CO2

across the interface between the atmosphere and a forest
canopy is determined through measuring the covariance
between fluctuations in vertical wind velocity and CO2

mixing ratio (Baldocchi 2001, 2003). These exchanges
measured by flux towers have taught a few remarkable
lessons:

– Atmospheric CO2 fluxes showed seasonal variability,
linked to basin scale spatial variability of climate and
local scale biogeochemistry.

– Surface energy partition and evapotranspiration are
often tied to the CO2 flux variability.

– Structural differences between the tropical forests and
Cerrado (savanna) physiognomies, or pasturelands,
were corroborated by measured fluxes.

– Wetlands function substantially different from dry
lands. Wetland contribution might be related to the
carbon budget of the entire basin, and dependent on
the flood-pulse variability.

– Site-specific characteristics (e.g. geomorphology, past
disturbances) constrain the measured CO2 flux vari-
ability.

– The combination of annual accumulation of CO2

fluxes with biometric measurements can help infer the
sink or source role of a plant community, regardless of
its transient daily character.

Although eddy covariance technique has provided
reliable measurements of bulk photosynthesis and res-
piration of temperate forest sites (Baldocchi et al. 1997;
Jarvis et al. 1997), there are situations where its capacity
to provide accurate integrated measurements of net
carbon exchange is uncertain. The uncertainties stem-
med from difficulties related to (1) night time fluxes,
when respired CO2 tend to accumulate within the forest
canopy and intermittent updraft events transfer it to the
atmosphere in a complex spatial pattern not consistently
caught by the flux tower sensors (Staebler and Fitzjarr-
ald 2004), and (2) an irregular topography, where lateral
CO2 advection to lower positions on the landscape, can
result in CO2 draining out from the eddy covariance
tower footprint (Araujo et al. 2002).



Since last decade, the continuous use of eddy
covariance technique and microclimate measurements
has amassed an impressive body of information on the
CO2 and water vapor cycle within Amazonian bound-
aries (Fig. 3). Variability in seasonal CO2 flux of terra
firme forests was noticed among sites of eastern (Caxi-
uanã, Tapajós), central (Cuieiras) and southern (Jarú)
regions of the Amazon basin. At Tapajós and Caxiuanã,
there was no evidence of drought stress during the dry
season as evapotranspiration peaked concurrently with
decreasing cloud cover and increasing surface net radi-
ation (Carswell et al. 2002; Rocha et al. 2004). Minimum
NEE peaked before the wet season (nearly October) at
the eastern sites, where carbon was taken up in the dry
season and released in the wet season, based on 3 years
of observation (2000–2003) (Saleska et al. 2003; Carswell
et al. 2002; Goulden et al. 2004)). This pattern was ex-
plained by an increase in soil respiration (and wood
biomass) in the wet season, and a substantial reduction
in the dry season, while gross ecosystem productivity
(GEP) responded weakly on a seasonal basis. GEP was
lowest in July, when the incoming solar radiation is also
lowest. The net carbon uptake peak late in the dry sea-
son and the minimum GEP are partly explained by the
flushing of new leaves and the innate seasonal rhythms
of the vegetation (Goulden et al. 2004). Events like the
reduction of precipitation due to ENSO warm episodes,
can cause a reduction in net primary productivity (NPP)
as evidences shown by Townsend et al. (2002), enhanc-
ing the seasonality on CO2 fluxes in Amazonia.

Among the sites previously mentioned, at Cuieiras
the average NEE shows a weak seasonal variability,
suggesting a lower average carbon uptake in the dry
season (�17 lmol CO2 m�2 s�1) relative to the wet
season (�21 lmol CO2 m�2 s�1) (Malhi et al. 1998;
Araujo et al. 2002). As opposed to Tapajós, at Cuieiras,
there appeared to be limited reduction of soil respiration
in the dry season. This could be related to the shorter
dry season length in the Manaus region (� July–Octo-
ber) than in Tapajos (�July–December). Given that,
observations at Cuieiras were taken partly over poorly
drained valleys (contrasting to the observations over
flatter and well-drained plateaus at Tapajos), where soils
saturate more often (Chambers et al. 2004), a shortest
dry season could prevent large moisture depletion
(Davidson et al. 2000). This combined with small but
significant increases in air and soil temperatures, could
prevent a large soil respiration reduction. Possibly also
related to different dry season lengths, the seasonal
amplitude of NEE appeared larger in Tapajós
(�700 kg C ha�1 month�1) than in Cuieiras
(�150 kg C ha�1 month�1) (Saleska et al. 2003; Araujo
et al. 2002).

At Jarú site, net carbon uptake is reduced continu-
ously throughout the dry season (June–August), as op-
posed to Tapajós, and with larger seasonal amplitude
than Cuieiras (Kruijt et al. 2004; von Randow et al.
2001). This pattern, observed at Jarú transitional tropi-
cal forest, is influenced by recurrent cooler temperatures

(�13�C) in the winter, and responds similarly to semi-
deciduous forests, where leaf senescence is pronounced
in the dry season. Culf et al. (1996) reports increasing
solar albedo during May–August at the Jarú site, con-
current with soil moisture depletion, which partly ex-
plains the changes in phenology and the CO2 fluxes. The
authors observed a similar variation in albedo in the
Manaus region (Reserva Ducke forest), although sea-
sonality in CO2 fluxes was less evident in Cuieiras so far.

Over the Cerrado sites (savannas to the South), a net
carbon uptake clearly occurs during the wet season,
whereas strong positive NEE occurs in the late dry
season. This pattern is markedly shown in the transi-
tional mature forest (Cerradão) (11.5�S) (Vourlitis et al.
2001) and over a Cerrado restrito site in Brasilia (16�S)
(Miranda et al. 1996). Vourlitis et al. (2004) stress the
remarkable reduction in evapotranspiration during the
dry season over Cerradão. Vourlitis et al. (2001) showed
that the NEE of Cerradão was similar to that of tropical
rainforest during the wet season (a net sink between
�0.6 lmol and �1.2 lmol CO2 m

�2 s�1, during Feb-
ruary and April), but during the dry season it was more
similar to that reported for tropical savanna, being in
balance during August–September, and a net source of
0.6 lmol and 1.7 lmol CO2 m

�2 s�1 during October–
November. A comparable variability was observed over
a Cerrado restrito site down in southeast Brazil (18�S)
(Rocha et al. 2002). This is very suggestive that despite
the latitudinal and climate differences among sites,
adaptive mechanisms of these species can exert a large
and common control on the carbon exchanges for the
Cerrado biome.

Over dry forests, plant gross primary productivity
(GPP) increases during the wet season, as seasonal
drought results in a negative water balance in the trees
and a reduction in stem growth. In seasonally flooded
forests, however, tree growth occurs during the terres-
trial (dry) phase (Dezzeo et al. 2003; Schongart et al.
2002), as flooding causes leaf shedding. It is predicted
that GPP starts to increase at the end of the aquatic
phase, when the leaves flush. Interannual variability also
increases plant GPP, in these forests, as a reduction in
precipitation by ENSO warm episodes in eastern and
central Amazonia reduce the period of inundation
(Schongart et al. 2004). Atmospheric NEE observations
in the Bananal Island (characterized by a seasonally
flooded ecotone Cerradão-Cerrado-campo) show a
reduction in ecosystem nocturnal respiration during the
aquatic phase (February–April) and consequently
increasing ecosystem carbon uptake (H. Rocha in
preparation).

Conversion of tropical forests to pasturelands in
Amazonia reduces evapotranspiration, mostly in the dry
season (Wright et al. 1992), and the moisture status in
the root zone (Hodnett et al. 1995). The control of
carbon exchanges become variable and largely depen-
dent of the crop physiology and management. Sakai
et al. (2004) measured the turbulent CO2 fluxes over
agricultural fields in Santarém, in a succession of pas-



ture, plowed bare soil and a rice plantation. They ob-
served a larger average carbon uptake over the rice
plantation (non-irrigated) (�7.0±0.5 lmol CO2 m

�2

s�1) compared to the pasture (�2.3±0.5 lmol
CO2 m

�2 s�1 in the wet season and �1.6±0.2 lmol
CO2 m

�2 s�1 in the dry season). Plowed bare soil in
between these two plantations showed an average loss of
1.8±0.5 lmol CO2 m

�2 s�1.
While it seems unlikely that as large a carbon uptake

as 6 Mg C ha�1 year�1 reflects a steady ecosystem state
(Chambers et al. 2001b), it is also not obvious that the
sum of instantaneous CO2 fluxes always provides a
realistic estimate of average net ecosystem production.
Lack of air turbulence and insufficient mixing of CO2

from canopy respiration during the night often is cor-
rected with the measurement of a storage term. These
corrected fluxes are intended to achieve better accuracy
in estimating the amplitude of diurnal and seasonal cy-
cles and the variability among sites in Amazonia.

However, the generally presumed conditions of flat
and drainage-free surfaces along the tower fetch are
rarely found. Thus, local topography and air-mass cir-
culation are crucial (Araujo et al. 2002). Accounting for
these site-specific problems is not trivial (Staebler and
Fitzjarrald 2004). The hypothesis that low turbulence
during nighttime is correlated proportionally to drain-
age losses, suggests that the use of thresholds based on
turbulence scales (such as u* used in deciduous forests;
Goulden et al. 1996) may be effective for some sites in
Amazonia. This would allow the replacement of night-
time low-turbulent events with well-mixed ones (Miller
et al. 2004; Araujo et al. 2002; Saleska et al. 2003). This
may improve the realism of the NEE annual sum
(Saleska et al. 2003). However, the accurate application
of turbulence filters to a given site’s data requires
parameters from other studies, such as using radon as
proxy for CO2 transport within the canopy (Martens
et al. 2004) or from direct measurement of in-canopy
advection (Staebler and Fitzjarrald 2004). Until the
problem of topography-related CO2 loss is properly re-
solved, with the development of widely accepted eddy-
flux correction methodology, site-dependent estimates of
NEE annual sums for Amazonian forests remain
uncertain.

Biometry studies

The annual allocation of photosynthetic products to
wood growth is estimated from the annual biomass
increment in a forest stand. This is achieved either
through repeated surveys of trees (Baker et al. 2004a, b)
or through the use of dendrometer bands assigned to
representative trees within the stand (Rice et al. 2004;
Vieira et al. 2004). Such forest inventory plots were used
to infer average net storage in live biomass of undis-
turbed tropical forests. However, these measurements
only account for inter-annual and stand level variations
over a relatively short time scales and limited spatial

coverage. The evaluation of residence time for carbon in
vegetation is critical for carbon storage calculations,
thus growth rates, stand and vegetation ages are essen-
tial measurements for carbon dynamic studies. Hough-
ton et al. (2000) observed that the previous biomass of
deforested areas was the major uncertainty in the esti-
mation of carbon flux to the atmosphere. The uncer-
tainties in biomass estimates have several causes. Maybe
one of the most important and difficult to solve is the
natural heterogeneity of tropical forests. According to
Thomaz (2000) there may be up to 35,000 species of
angiosperms in the Amazon basin. But the extent of the
potential diversity still to be found is unknown (Tuom-
isto et al. 1995), and may render this last estimate a
conservative one. Still, this number represents almost
14% of all known angiosperms species in the globe,
encompassed in an area equivalent to 4.7% of the land
area on Earth. While on one hand, such high biodiver-
sity is a joy of life, on the other hand, it makes allometric
biomass measurement a logistical nightmare. As there
are hundreds of different individuals and species per
hectare, it is expected high variability on form, height,
wood density and structure within a site (Clark 2004).
Besides this in-site variability there is also important
variability among different regions due to differences in
soil composition and climatic differences (Malhi et al.
1999; Marengo and Nobre 2001).

Thus, the mega complexity of this ecosystem engen-
dered several questions related to above ground biomass
estimation (Keller et al. 2001; Brown et al. 1995). The
most common methods to tackle these questions are: (1)
direct estimates by cutting and weighting all trees above
10 cm diameter at breast height (DBH) over a relatively
small area, generally smaller than 0.5 ha (Phillips et al.
2004) or (2) indirect estimates by using allometric
equations (Chambers 2001; Gerwing and Farias 2000;
Brown et al. 1995). These equations are obtained by
cutting and weighting a determined number of trees and
relating their biomass with DBH and height. Estimates
of biomass in Amazonia may involve scattered mea-
surements of DBH and height over large areas, like the
measurements made by the RADAMBRASIL project or
over small areas (generally smaller than 5 ha) (Hough-
ton et al. 2001). Although it seems simple, measurement
of parameters like DBH can be difficult in tropical for-
ests, resulting in large errors in biomass estimation
(Clark 2002). In addition, it seems that the choice of the
right allometric equation is of fundamental importance
to reduce those errors (Chave et al. 2004). Most of the
live biomass, growth, mortality and recruitment mea-
surements are taken on permanent forest transects, lo-
cated in more representative parts of the studied forest.
Normally, longer transects aims to incorporate spatial
heterogeneity avoiding bias associated with small-scat-
tered plots that can be disproportionately influenced by
emergent trees (Rice et al. 2004). Brown et al. (1995)
support the general idea that in tropical forests, the
aboveground biomass is dominated by few large trees,
showing as example a forest in western Amazonia where



trees with DBH above 60 cm account for 50% of the
biomass. In this transect, trees are identified and dend-
rometers are placed in a random sub-sample within the
plot, but distributed across taxonomic families and sizes.
The dendrometers normally used are stainless-steel
bands (Rice et al. 2004; Vieira et al. 2004) or automated
systems (Miranda 2002; Silva et al. 2002). Baker et al.
(2004a, b) produced three estimates based on above-
ground measurements in plots. Their results were clus-
tered in three groups: east and central plots; western
plots and floodplain plots. The east and central plots
showed the smallest carbon gain
(�0.37 ton C ha�1 year�1) and the floodplain forest
plots the largest carbon gain (�1.2 ton C ha�1 year�1).

In recent study, Vieira et al. (2004) has illustrated a
high diversity among three study plots located in terra-
firme forests near Manaus, Rio Branco and Santarém
(Table 1). The range in number of species per hectare in
these plots was similar to that in other 16 other plots
summarized by Oliveira and Nelson (2001) that show a
range from 90 up to 285 species per hectare in Amazo-
nian terra-firme forests.

An important aspect of aboveground biomass, espe-
cially wood, is the residence time of carbon in this pool.
This is related to functional group, forest stand, nutrient
availability and environmental conditions. Condit et al.
(1995) have shown large increases in tree mortality
associated with extremely dry conditions in tropical
forests. The difference in adaptation to extreme condi-

tions potentially leads to changes in how biomass is
distributed among different functional types (Philips and
Gentry 1994). Also, the accumulation of C in living
wood may be offset by tree mortality; hence the degree
to which a forest is acting as a source or sink of C to the
atmosphere is not solely dependent on the growth rate of
living wood. Understanding mortality, its spatial and
temporal distribution, and its relationship to climate and
disturbance (such as fire, for instance) are critical points
to be considered when attributing mean life time for
trees on global models of climatic change. Chambers
et al. (1998) found that the ages of emergent trees (DBH
varying from 80 cm to 240 cm) sampled near Manaus,
central Amazonia, varied from 200 years to 1,400 years,
although such millenary trees were not documented
by other investigations anywhere else in the tropics
(Worbes 2002).

Besides the high variability in tree age reported for a
single site, radiocarbon ages determined in several trees
in Manaus, Rio Branco and Santarém showed also a
large within site variability, as well as a high variability
among sites (Vieira et al. 2004). For instance, the mean
radiocarbon age in Manaus was 306 years, while in
Santarém the mean radiocarbon age was much younger,
approximately 160 years (Simone Vieira and Plı́nio
Camargo, personal communication). Overall, the few
results shown so far indicate that mean tree age in
Amazonia appears to be higher than 42 years as used in
some models.

NEE of Amazonia

Several papers based on modeling terrestrial NPP
(Friedlingstein et al. 1995; Mellilo et al. 1996; Thompson
et al. 1996; McGuire et al. 1997) have shown that
tropical forests could be one of the key biomes in the
modern global carbon cycle. Nevertheless, the first esti-
mate of tropical NEE produced by atmospheric inverse
model calculations showed a high degree of variability,
revealing no CO2 emission pulse created by tropical
deforestation (Schimel et al. 2001). This was taken as
indirect evidence that the tropics could be acting as an
important carbon sink, as deforestation was widespread
in this region. Several basin-wide estimates, proposed
since the beginning of the 1990s for Amazonia, are
summarized in Fig. 6. The first local measurement made
by Grace et al. (1995a), using eddy covariance technique,

Table 1 Number of individuals with diameter at breast height
higher than 10 cm/ha followed by the number of botanical families
and species in Manaus, Rio Branco and Santarém (Vieira et al.
2004)

Manaus Rio Branco Santarém

Individuals 626 466 450
Family 52 40 50
Species 232 164 265

Fig. 6 Estimates of net ecosystem exchange (NEE) obtained by
eddy covariance technique (open bars) and by aboveground
biomass estimates (black bars). NEE values are plotted according
to the year of publication. Grace et al. (1995a)—eddy covariance
technique, Ji-Paraná; Malhi et al. (1998)—eddy covariance tech-
nique, Manaus; Phillips et al. (1998)—biomass inventory, several
sites; Araujo et al. (2002)—eddy covariance technique Manaus;
Carswell et al. (2002)—Reserva Caixuanã; Miller et al. (in
press)—biomass inventory, Santarém; Saleska et al. (2003)—bio-
mass inventory, Santarém; Saleska et al. (2003)—eddy covariance
technique; Baker et al. (2004)—biomass inventory, eastern and
central plots, western plots and floodplain plots, respectively



found a net carbon gain of approximately
1 ton C ha�1 year�1. This net gain lead to a lively de-
bate about the role of the Amazonia forests as an
important sink for carbon. Few years later, a second
similar eddy covariance study, comprised of an entire
year of observations in central Amazonia, found a net
carbon gain almost sixfold larger than that of the first
study (Malhi et al. 1998). Tropical forests are one of the
largest carbon reservoirs among terrestrial systems
(Field et al. 1998), thus changes of this magnitude in
these ecosystems would affect planetary scale processes.
In the same year, the first large compilation of stand
biomass growth data in several tropical sites corrobo-
rated the eddy covariance findings of net gain, but
pointed to a sink magnitude closer to the figure of the
first eddy covariance study (Philips et al. 1998). The idea
that primary forests could be large sinks of C directly
challenged the ecological assumption of mature forests
as being in ‘‘a long term climax’’. Grace and colleagues
attributed this uptake to a CO2 fertilization effect. A
series of measurements have tested the CO2 fertilization
claim (see Fig. 6 and item 4.1) (Laurance et al. 2004;
Phillips et al. 2002a; Johnson et al. 2001; Lloyd et al.
2001; Malhi et al. 1999; Nelson et al. 1999), but to our
knowledge no research result has yet demonstrated a
clear causal relationship between Amazonian rainforest
growth and an increased atmospheric CO2 concentra-
tion.

As most of the early estimates of NEE pointed to-
wards a carbon gain by the forest, several studies at-
tempted to locate the potential extra carbon storage in
the Amazonian ecosystems. Some claimed upfront that
very large uptake by these forests was ecologically
unrealistic (Keller et al. 2001), mainly because there
would be nowhere to store the implied large amount of
carbon. Malhi and Grace (2000) considered the
hypothesis that the majority of the extra carbon was
accumulating in the soil organic matter at a rate of
3.5 Mg C ha�1 year�1. However, Telles et al. (2003)
have estimated carbon stocks from 102 Mg to 151 Mg
C ha�1 year�1 with storage rates of 0.09–
0.13 Mg C ha�1 year�1 (they considered a 0.5% year�1

increase in ecosystem productivity), and with additional
potential storage of 0.18–0.27 Mg C ha�1 year�1 in
surface litter and roots. These authors have reported
turnover rates in the soil organic matter pool of less than
10 years; however, for the last 20 years, a stable carbon
stock was identified in primary forests of the Manaus
region, suggesting a low possibility of these soils being
potential carbon sinks for the considered period (Telles
et al. 2003). Residence time and fluxes of carbon in or
out of the soil and the time of residence of this carbon in
the soil profile are key factors in estimating the impor-
tance of this compartment to the carbon balance in a
forest system. Studies by Camargo et al. (1999) and
Bernoux et al. (2002) have shown that the majority of
carbon stocks in the soil are associated with recalcitrant
compounds (coal, lignin, etc.) that do not turnover on
the timescales of decades or centuries. Thus, production

and decomposition of wood predominates the dynamic
carbon stock of these forests (Chambers et al. 2000;
Phillips et al. 1998). Recent data from three sites in
Amazonia (Chambers et al. 2004; Viera et al. 2004; Silva
et al. 2002) have shown that tree growth and mortality
rates are too slow to account for the amount of carbon
similar to that indicated by early eddy covariance stud-
ies. Chambers et al. (2004) using stochastic-empiric
modeling of carbon dynamics of live and dead trees for
one site central Amazonia indicated that the forest can
support only a 0.5% increase in NPP over a long period.
However, these authors warn that their ‘‘...predictions
about whether or not old-growth tropical forests will act
as carbon sources, sinks, or remain in overall balance,
depends on assumptions for which reliable field data are
often not available.’’ (Chambers et al. 2004).

The site-specific question was addressed in a recent
work by Saleska et al. (2003). The authors presented
eddyflux NEE estimates at Tapajós, with biometric
measurements suggesting that the site was under the
effects of transient disturbance. These could include re-
cent past ENSO warm episodes, which may have caused
anomalously large mortality rates and have potentially
offset carbon uptake during the recovery. Keller et al.
(1996) have shown that the fall of a giant emergent tree
can result in a loss of about 750 kg C ha�1 over 13 ha
within a few years. These authors also pointed out that
recovery from long-term climate stress could otherwise
lead to net carbon uptake in the present. These uncer-
tainties suggest that there is a large spatial variability
over terra firme tropical forests in Amazonia, and that
average annual NEE estimates should combine bio-
metric measurements with climate interannual variabil-
ity to provide more accurate assessments.

The aquatic systems are another important compo-
nent of the Amazonian ecosystem that need to be con-
sidered for a regional carbon balance. Richey et al.
(2002) estimated that up to 1.2 Mg C ha�1 year�1 could
be lost to the atmosphere in a large swath of central
Amazonia. Extrapolation across the entire flooded area
of the basin produced an emission of approximately
0.5 Pg C year�1, which is of the same magnitude as the
carbon emission caused by land-use changes in Tropical
Latin America (DeFries et al. 2002). Contrastingly,
Waterloo et al. (in preparation) have recently concluded,
from a continuous long-term measurement in a moni-
tored black water catchment near Manaus, that typical
terra-firme forest export a significantly smaller load of
dissolved organic compounds (<0.3 Mg C ha�1 year�1)
than speculated by Richey et al. (2002). This transfers
the potential source of the estimated riverine emissions
to productive ecosystems within whitewater floodplains
(Junk 1997; Piedade et al. 2000). Shedding a little more
light on this controversy, eddyflux measurements were
carried out for a complete seasonal cycle in the Pantanal
wetland area, near the border of Brazil and Bolivia, to
the South of Amazonia (Manzi et al. 2002). These
measurements have indicated a marked source during
the flood period, similar to the estimate of Richey et al.



(2002), but have also shown a strong sink in the ebb
season (Manzi et al. 2002). The reversal in carbon bal-
ance is probably due to vigorous revegetation by C4
grasses and other floodplain plants (Piedade et al. 2000),
confirming the potential importance of productivity
within the floodplain in balancing the total exchange of
these biomes with the atmosphere. In addition, radio-
carbon measurements (Emilio Mayorga and Anthony
Aufdenkampe, personal communication) show that
most emitted C is relatively recent in origin—aquatic
systems lose C to the atmosphere rapidly enough so that
adjustments to change would be instantaneous. There-
fore, the role of aquatic systems in local to regional C
budgets will depend primarily on the temporal balance
of CO2 sources in the flood season and CO2 sinks in the
ebb season. However, the origin of the CO2 being lost to
the atmosphere (e.g. in-stream or riparian processes vs.
export from uplands) and how long it takes for C to
transit to the aquatic system (without significant—e.g.
decadal—time lags, there can be no net storage or loss)
also need to be considered. The importance of aquatic
systems will also depend on their potential for change
with land use or climate, a matter still under investiga-
tion.

More recently, a series of articles called for caution
in interpreting potential gains of carbon by biomass in
the Amazonia (Chambers and Silver 2004; Clark 2004;
Körner 2004). In short, the main message of these
studies may be summarized by two sentences from
Christian Körner works: (1) ‘‘a stimulation of assimi-
lation does not necessarily mean that there is more
growth’’, and (2) ‘‘a stimulation of growth does not
necessarily mean enhanced carbon sequestration’’. Thus
the C storage under a NEE perspective is also depen-
dent on changes in the dynamic structure, or regrowth,
of forests. A change from emergent trees to lianas and
small trees (Laurance et al.1997; Phillips et al. 2002b)
can reflect a net carbon loss to the atmosphere. An-
other key issue, illustrated by LBA project, is that the
Amazonian ecosystems have very large capacity for
interannual shifts in C balance (i.e. the interannual
variation in the wood storage term shown by Vieira
et al. 2004).

In order to place Amazonia in a global perspective
and make the carbon flux obtained through the LBA
project comparable with global carbon budgets, we
extrapolated NPP/NEE values found by (several) LBA
studies to the entire area of Brazilian Amazonia covered
by rainforest. We are fully aware of the tremendous
variability across ecosystems of Amazonia, and this
heterogeneity could make invalidate our simple extrap-
olation. Nevertheless we feel it is important to make a
first approximation, such as this, in order to compare the
carbon flux measured in the Amazonia plots with global
carbon estimates (Fig. 7).

An recent comparison of atmospheric CO2 inver-
sion models indicated that tropical lands in the
Americas could be a net source of
0.62±1.15 Pg C year�1 (Gurney et al. 2002). This

contrasts with estimates by Schimel et al. (2001) where
the tropics appear as a neutral source or sink for
carbon. Both, Gurney et al. (2002) and Schimel et al.
(2001), stressed that uncertainties in the tropical re-
gions of the world are much greater than elsewhere
due to the lack of an adequate and accurate CO2

concentration measurement network.
The four last estimates of carbon flux in the tropics

due to land use changes produced different values.
Fearnside (2000) and Houghton (2003) using defores-
tation rates from FAO estimated 2.4 Pg and
2.2 Pg C year�1, respectively, for the net flux due to
land use changes in the tropics. Achard et al. (2002) and
DeFries et al. (2002), based on deforestation inferred
directly from satellite data, produced lower estimates for
the tropics of 0.96 Pg C year�1, respectively. If the
estimates of Fearnside (2000) and Houghton (2003) of
tropical deforestation are correct, the emission term in
the tropics would be approximately 2.3 Pg C year�1.
However, the inversion models are capturing in average
total emissions of only 0.62 Pg C year�1. Forgetting for
a moment the uncertainty of the inversion models, this
would imply that there must be a local sink of approx-
imately 1.6–1.7 Pg C year�1, which would be equivalent
to a net gain of 2.7 ton C ha�1 year�1 in areas of pris-
tine rainforest. If the estimates by Achard et al. (2002)
and DeFries et al. (2002) are correct, conversion of
tropical forests would be releasing to the atmosphere an
average of 0.93 Pg C year�1. In this scenario, a smaller
C sink of approximately 0.31 Pg C year�1 would be
needed then to satisfy the inversion models, resulting in
a potential sink strength for pristine forests of
0.85 ton C ha�1 year�1. In this case, the tropical forests
would act as source of carbon to the atmosphere
equivalent to 0.85 ton C ha�1 year�1. Using our crude
extrapolation of LBA values for the Amazon forests
(5 million km2) we come out with a carbon exchange
estimate varying from �3.0 Pg to 0.75 Pg C year�1

(Fig. 7).

Conclusions

There is a large uncertainty in carbon fluxes estimates
for the tropics as a whole and in Amazonia in partic-
ular bring the awareness that we have not enough
information to decide whether Amazonia is a carbon
source or sink, or if it is both, depending on climatic
variation and the rates of forest conversion. The
accumulation of sufficient information for a huge sys-
tem such as the Amazon region has to advance step by
step.

The future of the carbon balance, especially in the
Brazilian Amazonia, is closely related to the economy.
As the Brazilian economy grows, deforestation rates
may increase if the government does not provide envi-
ronmentally sustainable regulation. Increasing defores-
tation rates might overwhelm a potential sink by
primary and regrowth forests.



The complex sink/source duality of Amazonia was
discussed extensively in the literature and during several
scientificmeetings of the LBAproject; however, no strong
conclusions were drawn, other than the ones presented in
this work. The valuable data emerging from the pioneer-
ing network of flux towers and forest plots in Amazonia
bring, for the first time, the unique chance to compare and
understand diverse and contrasting ecophysiological
processes. Process models have yet to capture this im-
mense complexity in a fine resolution. Certainly, it is an
important and vital question for Brazil and for the world
from many perspectives. However, by paying too much
attention to the issue of uniqueness of a sink or source
character and finding its magnitude, we may loose a great
opportunity to discuss the basic functioning and the
complexities of the ecosystems in Amazonia.
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Procópio AS, Artaxo P, Kaufman YJ, Remer LA, Schafer J S,
Holben BN (2004) Multiyear analysis of Amazonian biomass
burning smoke radiative forcing of climate. Geophys Res Lett
31:L03108. DOI 10.1029/2003GL018646

Rice AH, Pyle EH, Saleska SR, Hutyra L, Carmargo PB, Portilho
K, Marques DF, Wofsy SF (2004) Carbon balance and vege-
tation dynamics in an old growth Amazonian forest. Ecol Appl
14(4):555–571

Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess
LL (2002) Outgassing from Amazonian rivers and wetlands as
a large tropical source of atmospheric CO2. Nature 416:617–
620

Rocha HR, Freitas H, Rosolem R, Juarez R, Tannus RN, Ligo
MV, Cabral OMR, Silva Dias MAF (2002) Measurements of
CO2 exchange over a woodland savanna (Cerrado Sensu stric-
to) in southeast Brasil. Biota Neotropica 2(1):

Rocha HR, Goulden ML, Miller SD, Menton MC, Pinto LDVO,
Freitas HC, Figueira AMS (2004) Seasonality of water and heat
fluxes over a tropical forest in eastern Amazonia. Ecol Appl
Suppl 14(4):S22–S32

Sakai R, Fitzjarrald D, Moraes O, Staebler R, Acevedo O, Czi-
kowsky M, da Silva R, Brait E, Miranda V (2004) Land-use
effects on local energy, water and carbon balances in an Ama-
zonian agricultural field. Global Change Biol 10(5):895–907

Saleska SR, Miller SD, Matross DM, Goulden ML, Wofsy SC, da
Roacha HR, de Camargo PB, Crill P, Daube BC, de Freitas
HC, Hutyra L, Keller M, Kirchoff V, Menton M, Munger JW,
Pyle EH, Rice AH, Silva H (2003) Carbon in Amazon forests:
unexpected seasonal fluxes and disturbance-induced losses.
Science 302:1554–1557

Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P,
Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J,
Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein
P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore
III B, Murdiyarso D, Noble I, Pacala SW, Prentice IC, Raup-
ach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C (2001)
Recent patterns and mechanisms of carbon exchange by ter-
restrial ecosystems. Nature 414:169–172

Schimel DS (1995) Terrestrial ecosystems and the carbon-cycle.
Global Change Biol 1:77–91

Schongart J, Junk W, Piedade MTF, Ayres M, AlloyShutterman
A, Worbes M (2004) Teleconnection between tree growth in the
Amazonian floodplains and the El Niño–Southern Oscillation
effect. Global Change Biol 10:1–10

Schongart J, Piedade MTF, Ludwigshausen S, Horna V, Worbes
M (2002) Phenology and stem-growth periodicity of tree species
in Amazonian floodplain forests. J Trop Ecol 18:581–597

Silva Dias MAF, Rutledge S, Kabat P, Silva Dias PL, Nobre C,
Fisch G, Dolman AJ, Zipser E, Garstang M, Manzi A, Fuentes
JD, Rocha H, Marengo J, Plana-Fattori A, Sá L, Alvalá R,
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