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A B S T R A C T

Epidemiological studies generally use particulate matter measurements with diameter less 2.5 μm (PM2.5) from
monitoring networks. Satellite aerosol optical depth (AOD) data has considerable potential in predicting PM2.5

concentrations, and thus provides an alternative method for producing knowledge regarding the level of pol-
lution and its health impact in areas where no ground PM2.5 measurements are available. This is the case in the
Brazilian Amazon rainforest region where forest fires are frequent sources of high pollution. In this study, we
applied a non-linear model for predicting PM2.5 concentration from AOD retrievals using interaction terms
between average temperature, relative humidity, sine, cosine of date in a period of 365,25 days and the square of
the lagged relative residual. Regression performance statistics were tested comparing the goodness of fit and R2

based on results from linear regression and non-linear regression for six different models. The regression results
for non-linear prediction showed the best performance, explaining on average 82% of the daily PM2.5 con-
centrations when considering the whole period studied. In the context of Amazonia, it was the first study pre-
dicting PM2.5 concentrations using the latest high-resolution AOD products also in combination with the testing
of a non-linear model performance. Our results permitted a reliable prediction considering the AOD-PM2.5 re-
lationship and set the basis for further investigations on air pollution impacts in the complex context of Brazilian
Amazon Region.

1. Introduction

In spite of the efforts to improve air quality during the past decades,
levels of air pollution experienced by human populations continue to
cause a large burden of disease (Cohen et al., 2005; Brauer et al., 2015;
Global Burden of Diseases (GBD), 2010). Atmospheric aerosols and
particulate matter that are breathable (< 2.5 μm diameter= PM2.5)
and inhalable (< 10 μm=PM10), generated from natural and anthro-
pogenic emission sources present known effects for a number of causes
of death, particularly the increase in cardio-respiratory diseases in areas
with high concentrations (Brook et al., 2010; World Health
Organization (WHO), 2014).

Intensive and indiscriminate occurrence of forest fire has become a

serious environmental problem in Brazil, affecting ecosystems’ balance
and human health with consequences at the local, regional and global
level (Gonçalves et al., 2012; Becker, 2005). Brazilian Amazon region
has geographic and environmental circumstances that are distinct from
other world regions. For this reason, the occurrence of fire and emis-
sions of PM2.5 exposes every year increasingly large portions of vul-
nerable populations (Fearnside, 2005; Goncalves et al., 2014).

To understand the association between PM2.5 and effects on human
health, epidemiological studies have employed PM2.5 measurements
from monitoring sites. However, due to cost and lack of appropriate
infrastructure, especially in rural and remote areas, no fixed site PM2.5

measurements are available in many regions of Brazil. This is a major
limitation for estimating exposure to PM2.5 and assessing health
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impacts associated with forest fires as one of its major source (Lee et al.,
2011; Ruckerl et al., 2011; Ye et al., 2011; Yi et al., 2010; Arbex et al.,
2009; McMichael et al., 2008).

An alternative approach to estimate the air quality in areas without
direct PM2.5 measurements is by means of satellite remote sensing using
aerosols optical depth (AOD). AOD is an electromagnetic radiation
measure and reflects the integrated number of particles at a given
wavelength. It is an important satellite-retrieved property for predicting
the PM2.5 concentrations due repeated observations of the atmosphere
and its extensive spatial coverage (Kloog et al., 2014). The AOD has
been successfully used in statistical models for estimating PM2.5 levels.
As shown by previous studies, parameters such as local meteorology
and land use information influence the relationship between AOD and
daily PM2.5 concentrations, which need to be considered as additional
predictors (Lee et al., 2011; Liu et al., 2004, 2005, 2007a, 2007b,
2007c, 2009; Hoff and Christopher, 2009; Xie et al., 2015).

Traditionally, the health exposure studies have used the standard
MODIS (Moderate Resolution Imaging Spectroradiometer) AOD pro-
duct of the “Dark Target” algorithm published by Levy et al. (2007,
2010), which has a resolution of 10× 10 km2. Later, Remer et al.
(2013, 2005) described AOD algorithm applying a higher resolution of
3× 3 Km2. (Remer et al., 2005, 2013; Levy et al., 2007, 2010).

Concerning the applicability of the statistical methods for predicting
PM2.5 concentration using AOD retrievals, de Hoogh et al. (2017) used a
higher spatial resolution for modelling daily PM2.5 concentrations
across Switzerland during the period between 2003 and 2013. Their
models result explained on average 73% of the total,71% of the spatial
and 75% of the temporal variation (all cross validated) in measured
PM2.5 concentrations. Kloog et al. (2012) described a new hybrid
spatio-temporal model for estimating daily PM2.5 concentrations across
northeastern USA using high resolution AOD data. Their results showed
a high predictive accuracy at high spatial resolutions using a mixed
model regressing PM2.5 measurements with an excellent model per-
formance (R2=0.88).

These recent studies still have the challenge of reducing exposure
error, although shows better fits than previous models. In spite our
model showed a good performance, it is important to reproduce it in
another region with different meteorological and geographical patterns.
Our model can be applied to other sites if site-specific AOD and me-
teorological data are available, to be inserted into the prediction
equation. The lagged relative residual added as a further predictor
variable it is cautious strategy to remove the serial autocorrelation and
to further improve the model. As another important challenge is that
AOD data availability is much greater in the dry seasons compared to
the rainy period. This is mostly due to heavily clouded days which
results in missing AOD data. This non-random lack of AOD readings
could negatively affect predictive performance. Also, treating large
areas, such as Brazilian Amazon region, can add additional selection
bias since there may be meteorological variations in the daily calibra-
tion between PM2.5 and AOD (Kloog et al., 2012).

In this paper we developed a non-linear model predicting daily fine
particle concentrations using AOD retrievals at 3×3 km resolution and
ground-based measurements at a municipality of Porto Velho, Brazil
during the period between 2009 and 2011. For Brazilian Amazon re-
gion, it is the first study to develop this approach considering a non-
linear model predicting PM2.5 concentrations. This study assessment is
part of an investigation that aims at analysing the impact of PM2.5
exposure on cardiovascular disease in Porto Velho.

2. Material and methods

2.1. Ground-level PM2.5 data

Daily averages were derived during the period from 25 September
2009 to 21 October 2011 with a total of 757 days. Over the study
period, PM2.5 concentrations were measured for 24 h at one air quality

monitoring station in Porto Velho municipality, which was implanted in
partnership between Institute of Physics at University of São Paulo
(USP), University of Rondônia (UNIR), Environmental Biogeochemistry
Laboratory Wolfgang H. Pfeiffer and National School of Public Health-
Oswaldo Cruz Foundation (FIOCRUZ) in Brazil. The PM2.5 monitor is
located at 15 km north of to the centre of urban area (Fig. 1). Porto
Velho municipality is the third capital in the Brazilian Amazon region
with 67 districts within the urban area. With an area of 34,096 km2

Porto Velho has a population of 503,000 inhabitants according to
Brazilian Institute of Geography and Statistics (IBGE, Census 2010). PM2.5

measurements were collected by means of a stacked filter unit (SFU)
and were analysed gravimetrically according to the World Health Or-
ganization Air Quality Guidelines for particulate matter, ozone, ni-
trogen dioxide and sulfur dioxide (World Health Organization (WHO),
2006).

This methodology involves the sampling site (8.69° S, 63.87° W)
located in a region with large land use changes and associated regional
biomass burning. The SFU (Stacked Filter Unit) type samplers and the
analysis follows routine gravimetric techniques33. In addition, trace
elements and ionic compounds are collected, allowing for future ana-
lyses.

There is an AFG sampler, which collects aerosols for elemental PIXE
and black carbon analyses on the roof of the shelter, 24 h sampling. The
collection of aerosol particles using filters is a simple and very common
method for sampling aerosol particles. Filters allow elemental and ionic
analysis through a series of measurement techniques. The sampler
collects fine and coarse particles and contains an inlet that allows the
entry of particles in the range of 2 < Dp < 10 μm. The filters are
polycarbonate, having a diameter of 47 mm and are arranged in series.
In the first step the particles of the coarse fraction are retained using
Nucleopore filters with pores of 8 μm in diameter, in the second stage,
they are the fine particles that are retained using the filter Nucleopore
with pores of 0.4 μm. The samples collected with the AFG sampler was
used to determine the mass of the aerosols by means of gravimetric
analysis, the concentration of black carbon and to quantify the ele-
mental concentration of the material deposited in the filters.

2.2. MODIS 3 km AOD retrieval

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a
key instrument aboard the Terra and Aqua satellites of the National
Aeronautics and Space Administration (NASA) and has been in opera-
tion since 1999 and 2002, respectively. While Terra passes the equator
in the morning, from north to south, Aqua passes the equator from
south to north in the afternoon. These satellites were used to retrieve
AOD aerosol products with a 3 km resolution (MOD04_3K and
MYD04_3K), operating at an altitude of approximately 700 km (http://
modis-atmos.gsfc.nasa.gov/). In the Collection 6, Level 2 aerosol pro-
ducts, the most recent 3 km AOD dark target retrieval algorithm is si-
milar to the 10 km standard product (Collection 5, Level 2) and has
three different wavelength channels of 0.47, 0.66 and 2.12 μm em-
ployed for AOD retrieval over land. The other channels are used for
screening procedures (e.g., coverage of cloud, snow and ice) (Remer
et al., 2013; Levy et al., 2007; Munchak et al., 2013). More details on
the retrieval of MODIS satellite aerosol data have previously been
published by Remer et al. (2013, 2005) and Levy et al. (2007, 2010).
For the AOD daily averages, we used the algorithm retrieval in MATLAB
(version 2015a, MathWorks) and the software ArcGIS (version 10,
ESRI) to create 820 grid cells of 3 x 3-km covering the study area for
spatial analyses.

2.3. Statistical model and validation

In this study we considered five different types of prediction models
of PM2.5 concentrations from AOD retrievals. They were all of the form
PM2.5= exp(linear predictor), with the linear predictor involving terms
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Fig. 1. Study area with the locations of PM2.5 and weather monitors. Municipality of Porto Velho, Rondônia state, Brazilian Amazon region.
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composed of AOD and other influencing factors. The advantage of such
a model over one for log-transformed outcome data is that it provides
estimates of mean exposure levels while estimates of geometric mean
levels are obtained when modelling log-transformed outcome data and
then exponentiating the resulting predictions (which are on the log-
scale). In Model 1, we took the linear predictor to be a cubic polynomial
in AOD with time-independent coefficients:

(Model 1)

PM2.5 = exp(α + β1(AOD) + β2 (AOD)2 + β3 (AOD)3)

In a next step, we considered the coefficients of Model 1 to be
polynomials of second degree in average temperature (TEMP) and re-
lative humidity (RH). Thus, each of the coefficients was assumed to
be of the form γ0 + γ1∙TEMP + γ2∙RH + γ3∙TEMP2 + γ4∙RH2

+ γ5∙TEMP∙RH. Multiplying these polynomials with AOD, AOD2 and
AOD3 and the intercept, respectively, provided:

(Model 2) PM2.5=Model 1 ∙ exp(β4(AOD∙TEMP) + β5(AOD∙TEMP2) +
β6(AOD∙RH) + β7(AOD∙(RH2)+ β8(AOD∙TEMP∙RH) +
β9(AOD2∙TEMP) + β10(AOD2∙TEMP2)+ β11(AOD2∙RH) +
β12(AOD2∙RH2)+ β13(AOD2∙TEMP*RH) + β14(AOD3∙TEMP) +
β15(AOD3∙TEMP2)+ β16(AOD3∙RH) + β17(AOD3∙RH2)+
β18(AOD3∙TEMP∙RH))

In an attempt to further improve the model, we added interaction
terms between AOD, AOD2 and AOD3 with rainy season (Model 3) and
tested interactions of the three AOD-terms with sine and cosine func-
tions of date with a period of 365.25 days in the Model 4.

In the last step, we included the lagged relative residual and its
square as additional predictor variables (Model 5). This was to reduce
serial autocorrelation. The final model obtained after some backward
elimination steps was of the form:

(Final model)

PM2.5 = exp(α + β1∙ AOD + β2∙AOD2) + β3∙AOD3 +
β4∙ (AOD∙TEMP) + β5(AOD∙RH) + β6(AOD∙TEMP2) +
β7(AOD∙RH2)+ β8(AOD∙cos_days) + β9(AOD∙sin_days) +
β10(AOD2∙ cos_days) + β11(AOD2∙sin_days) +
β12(AOD3∙cos_days) + β13(AOD3∙sin_days) + β14(residual)+ β15(residual)2

In these equations, PM2.5 denotes the predicted concentrations,
where exp is the exponential function; cos_days and sin_days denote the
cosine and sine terms of date with a period of 365,25 days; residual
denotes the lagged relative residual. Relative residuals were defined as
ratio between residuals and predicted values. Model performance was
evaluated by comparing the predictions with the ground measurements
using the adjusted coefficient of determination (R2 adj), residual stan-
dard deviation (RMSE), Akaike's information criterion (AIC), and par-
tial autocorrelation of residuals by lags. High values of adjusted R
squared suggest that MODIS AOD data can be used to estimate ambient
concentrations. Furthermore, we calculated mean, standard deviation
and maximum/minimum values to summarize the descriptive statistics
of our sample for the whole period, the dry season (months June to
November, when forest fires occur in Brazilian Amazon region) and the
rainy season (months from December to May).

Table 1
Descriptive statistics of the parameters analysed during the study period (September 25th, 2009 to October 21th, 2011).

Variable Entire period (25 September 2009 to 21 October 2011)

Na Mean SDb Min Max

MODIS AOD 3 km (unitless) 649 0,29 0,36 0,03 2,19
PM2.5 (μg/m3) 649 11,36 20,06 1.68 164,41
Average temperature (°C) 649 26,82 1,41 16,24 31,26
Relative humidity (%) 649 84,93 5,80 61,50 98,75
Preciptation (mm) 649 5,06 11,37 0 71,40

Dry season (June to November)

Variable N Mean SD Min Max

MODIS AOD 3 km (unitless) 323 0,44 0,46 0,03 2,19
PM2.5 (μg/m3) 323 20,51 25,19 1.68 164,41
Average temperature (°C) 323 27,00 1,68 16,24 31,26
Relative humidity (%) 323 82,18 5,90 61,50 98,75
Preciptation (mm) 323 0 0 0 0

Rainy season (December to May)

Variable N Mean SD Min Max

MODIS AOD 3 km (unitless) 326 0,14 0,07 0.03 0,76
PM2.5 (μg/m3) 326 2,28 2,87 1,68 26,62
Average temperature (°C) 326 26,66 1,07 22,07 29,05
Relative humidity (%) 326 87,65 4,21 73,80 98,00
Preciptation (mm) 326 7,76 14,09 0,10 71,40

Pearson correlation

Variable AOD PM2.5 TEMP RH PRECIP

MODIS AOD 3 km (unitless) 1
PM2.5 (μg/m3) 0.5811 1
Average temperature (°C) 0.245 0.1007 1
Relative humidity (%) −0.3957 −0.4455 −0.4411 1
Preciptation (mm) −0.101 −0.1454 −0.1638 0.2413 1

Note: a=Number of values observed in days; b= Standard deviation (SD).
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Daily meteorological data on average temperature and relative hu-
midity were obtained for the period 25 September 2009 to 21 October
2011 from the monitoring station of INMET (National Meteorology
Institute) in Porto Velho. The information is publicly available on the
website of the institute (www.inmet.gov.br).

The spatial distribution of the 3× 3km resolution MODIS AOD
average during the study period was derived by spatial interpolation
using the inverse distance weighting (IDW). We present the results for
all states in Brazil and for our study area. It is important to highlight
that all regression results were presented with the original AOD and
PM2.5 datasets. The software R (version 3.1.3) was used for statistical
analyses.

3. Results

3.1. Descriptive statistics

Table 1 shows the descriptive statistics of daily measured PM2.5,
values of AOD, relative humidity, average temperature and precipita-
tion from 25 September 2009 to 21 October 2011, as well as for the dry
and rainy seasons. Average daily level of PM2.5 from the ground-level
monitor was 11 μg/m3 with a standard deviation (SD) of± 20 μg/m3

over the three years studied. Of note, the analysis of the data for 2010,
the year when one of the most extreme dry seasons in Brazilian Amazon
region occurred, revealed an annual-mean of 36 μg/m3 (± 46 μg/m3

SD).
Considering the differences between seasons, the maximum daily

value was exceptionally high (164 μg/m3) during the dry seasons of the
period studied compared to 27 μg/m3 in the rainy seasons.

Over the entire study period, the daily AOD values observed varied
from 0.03 to 2.19. On average, 649 AOD values were retrieved per grid
cell which corresponds to 86% of the entire study period of 757 days.

All the meteorological variables such as relative humidity, average
temperature and precipitation were consistent with the climatic pat-
terns expected for the Brazilian Amazon region and thus support the
analysis in the regression models.

3.2. Non-linear prediction models

To test the performance of the five regressions models we use a total
of 649 valid days for the model fitting. The comparisons between the
models analysed and parameters estimated are shown in Tables 2 and 3

Model 1 shows an adj R2 of 0.54, RMSE of 13.59 μg/m3 and AIC of
5 234.3 for the whole period. Model 2 including interactions between
AOD, AOD2 and AOD3 and linear and quadratic terms in temperature
and relative humidity provided a better fit (R2= 0.67). After adding

interactions between the three AOD-terms and rain the fit only slightly
improved (R2=0.70). In Model 4 we excluded the rain term and added
interactions of the three AOD-terms with sine and cosine of date with a
period of 365.25 days. This model performed considerably better
(R2= 0.77; RMSE=9.59 μg/m3; AIC= 4 803.1).

After adding the lagged relative residual and its square as additional
predictors (Model 5) the adjusted R2 further increased to 0.82
(RMSE=8.60 μg/m3; AIC=4 797.6). This means that this non-linear
prediction model explains 82% of the variance of daily PM2.5 con-
centrations in combination with meteorological and seasonal variables.
The introduction of these two terms also led to a drastic reduction in
residual autocorrelation, in that lag1-autocorrelation of residuals was
no longer significant (Fig. 2). As visualized in Fig. 2, the time series of
predicted PM2.5 concentrations follows a very similar pattern as the
measured PM2.5 confirming the high performance of the prediction
models. The period from mid-July to end of October 2010 – a dry period
with plumes of biomass burning – is characterized by very high AOD
values, reaching peaks 50–100 times above the typical values observed
before and after this period. The comparisons between the measured
and predicted PM2.5 concentrations for Model 1 and Model 5 are illu-
strated in Fig. 3.

The Spatial distribution of PM2.5 predicted concentration over the
basin during different seasons for all Brazilian states are shown in
Fig. 4. The highest predicted PM2.5 concentrations were observed in the
Brazilian Amazon region during the forest fires season (months between
September, October and November). In our study area, PM2.5 averages
reached 44 μg/m3 in the urban area of Porto Velho, and 54 μg/m3

across the Rondônia state during the forest fires between 2009 and
2011. Information about the distribution of PM2.5 within the urban
districts of Porto Velho and the relation with the health data will be
presented in a separate manuscript about the impacts of PM2.5 on
human health in Brazilian Amazon region.

4. Discussion

The results of our final non-linear prediction model for PM2.5

showed a good performance, explaining on average 82% of the variance
in measured PM2.5 concentrations during the period studied. This result
is similar and in accordance with the findings presented by Lee et al.
(2011) and Xie et al. (2015), who showed prediction models that ex-
plained 92% and 82% of the variance in PM2.5 concentrations in the
North-eastern, US and in Beijing, China, respectively. Our model has
the advantage that it does not produce negative predictions and fits the
mean of the data as a function of the predictor variables. Moreover, by
including the lagged relative residual and its square as additional pre-
dictor variables it was possible to remove the significant lag1-auto-
correlation, and to further improve the model fit.

Observing the temporal distribution of predicted and measured
PM2.5 concentrations it is important to highlight the enormous peak of
PM2.5 observed between days 300 and 400 during the dry periods in our
study area with the maximum daily value of 164 μg/m3. This value
more than 6.5 times higher than the daily mean guideline value pro-
posed by WHO to protect public health (25 μg/m3). During the dry
season, this value was exceeded on X% of all days. As a consequence,
the long-term mean concentration during the dry period was 2 times
above the WHO annual mean guideline value, set at 10 μg/m3.
Currently, these values were adopted in only a few countries as legally
binding targets, thus, policy makers accept major impacts on morbidity
and mortality.34 On the other hand, during the rainy seasons con-
centrations were low (2 μg/m3;± 3 μg/m3 SD) and fully in line with
both, the daily and annual targets proposed by WHO (Hopke et al.,
1997; Künzli et al., 2015). This confirms the dominant role of fires as
source of ambient air pollution in the Amazon region. This result
highlight the importance to set limits for PM2.5 in the Brazil Air quality
Standards defined by the National Environmental Agency (CONAMA)
that currently set limits only for PM10.34 Our data provide unique input

Table 2
Comparison between prediction models.

Prediction models N dfa R2 R2 adjb RMSEc

Model 1 649 3 0.544 0.541 13.59
Model 2 649 18 0.683 0.674 11.47
Model 3 649 21 0.707 0.697 11.04
Model 4 649 27 0.782 0.772 9.58
Model 5 649 15 0.823 0.816 8.60

Note: a= degrees of freedom; b=R-squared adjusted; c=Residual standard
deviation (RMSE).
Model 1= simple model with linear, quadratic and cubic term of AOD.
Model 2 = Model 1 + interactions of AOD, AOD2 and AOD3 with linear and
quadratic terms in temperature and relative humidity; Model 3 = Model
2 + interactions between AOD, AOD2 and AOD3 and rain.
Model 4 = Model 3 + interactions of AOD, AOD2 and AOD3 with sine and
cosines of date with a period of 365.25 days (without the term for rainy season).
Model 5 = Model 4 + lagged relative residual and its square as additional
predictor variables.
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to evaluate whether the CONAMA may add to the Brazil Air Q S limits
for PM2.5 rather than PM10 alone. This will be particularly worth if
sources and spatio-temporal patterns of the two markers of air pollution
largely vary across Brazil.

The non-linear prediction model demonstrated a high performance
in predicting the daily PM2.5 concentrations. However, some limita-
tions, such as cloud properties and uncertainties need to be mentioned.
The use of only one air monitoring station for the development and
evaluation of the model is a major limitation of this study. However,
although this limits our ability to draw firm conclusions about the ap-
plicability of the model across Brazil, it does provide a valid approach
to predict PM2.5 across our main study area. PM2.5 is spatially rather
homogenously distributed, thus extrapolation of the model from the
measurement site to the adjacent urban area of Porto Velho is expected
to be reliable. The model gives also good indications of possible hot

Table 3
Description of parameters, standard error and p-value for each prediction
models.

Model 1 Estimate Std. Error t value Pr(> |t|)

β0 113.565 0.5333 21.295 < 2e-16 ***
β1 3.733.880 135.860 27.483 < 2e-16 ***
β2 369.936 135.860 2.723 0.00665 **
β3 319.761 135.860 2.354 0.01889 *

Model 2 Estimate Std. Error t value Pr(> |t|)

β0 1,10E+06 1,89E+05 5.803 1.03e-08 ***
β1 8,13E+07 9,91E+06 8.202 1.33e-15 ***
β2 3,19E+07 8,50E+06 3.751 0.000193 ***
β3 2,32E+06 5,36E+06 0.432 0.665709
β4 8,85E+04 7,41E+04 1.195 0.232703
β5 −1,62E+04 1,26E+04 −1.286 0.198907
β6 −2,44E+03 9,76E+02 −2.503 0.012569 *
β7 4,02E+02 4,75E+02 0.847 0.397177
β8 −4,14E+05 2,03E+05 −2.046 0.041196 *
β9 2,82E+04 3,92E+04 0.720 0.472077
β10 9,39E+03 3,01E+03 3.119 0.001895 **
β11 5,05E+01 1,17E+02 0.431 0.666751
β12 −1,19E+03 1,17E+03 −1.017 0.309673
β13 9,79E+04 9,91E+04 0.988 0.323655
β14 −5,25E+04 2,15E+04 −2.445 0.014744 *
β15 −3,73E+03 1,53E+03 −2.437 0.015070 *
β16 9,53E+01 7,64E+01 1.247 0.212722
β17 1,34E+03 5,54E+02 2.420 0.015795 *

Model 3 Estimate Std. Error t value Pr(> |t|)

β0 1,09E+06 1,85E+05 5.870 7.05e-09 ***
β1 8,22E+07 9,58E+06 8.584 < 2e-16 ***
β2 3,36E+07 8,29E+06 4.057 5.60e-05 ***
β3 2,95E+06 5,21E+06 0.566 0.571754
β4 8,48E+04 7,17E+04 1.183 0.237140
β5 −1,68E+04 1,22E+04 −1.379 0.168533
β6 −2,47E+03 9,43E+02 −2.616 0.009109 **
β7 5,13E+02 4,60E+02 1.116 0.264968
β8 −4,16E+05 1,96E+05 −2.123 0.034177 *
β9 4,21E+04 3,87E+04 1.088 0.276841
β10 9,67E+03 2,91E+03 3.325 0.000935 ***
β11 −1,90E+01 1,19E+02 −0.159 0.873546
β12 −1,46E+03 1,14E+03 −1.285 0.199287
β13 8,94E+04 9,59E+04 0.932 0.351465
β14 −5,79E+04 2,12E+04 −2.734 0.006433 **
β15 −3,69E+03 1,48E+03 −2.498 0.012757 *
β16 1,20E+02 7,65E+01 1.572 0.116357
β17 1,46E+03 5,39E+02 2.708 0.006950 **
β18 −1,01E+05 2,00E+04 −5.063 5.44e-07 ***
β19 3,62E+05 1,18E+05 3.063 0.002283 **
β20 −2,58E+05 1,33E+05 −1.935 0.053453.

Model 4 Estimate Std. Error t value Pr(> |t|)

β0 5,55E+05 1,68E+05 3.305 0.001003 **
β1 3,85E+07 1,04E+07 3.692 0.000242 ***
β2 4,62E+06 9,84E+06 0.469 0.638882
β3 −6,61E+06 5,32E+06 −1.245 0.213777
β4 1,04E+05 6,25E+04 1.659 0.097687.
β5 1,28E+02 1,08E+04 0.012 0.990548
β6 −1,88E+03 8,21E+02 −2.291 0.022301 *
β7 −1,21E+02 4,08E+02 −0.296 0.767175
β8 −3,37E+05 1,72E+05 −1.956 0.050898 .
β9 −5,94E+04 4,05E+04 −1.467 0.142785
β10 4,84E+03 2,56E+03 1.893 0.058828 .
β11 2,10E+02 1,19E+02 1.773 0.076650 .
β12 9,88E+02 1,11E+03 0.894 0.371821
β13 9,74E+04 8,57E+04 1.136 0.256252
β14 2,08E+04 2,51E+04 0.832 0.405926
β15 −1,46E+03 1,30E+03 −1.129 0.259177
β16 −8,98E+01 8,23E+01 −1.091 0.275639
β17 −2,22E+02 5,79E+02 −0.383 0.701887
β18 −1,24E+04 2,54E+04 −0.488 0.625602
β19 7,89E+04 1,19E+05 0.664 0.506904
β20 −9,50E+04 1,24E+05 −0.767 0.443244

Table 3 (continued)

Model 1 Estimate Std. Error t value Pr(> |t|)

β21 6,99E+04 1,49E+04 4.681 3.51e-06 ***
β22 −3,71E+04 7,47E+03 −4.966 8.83e-07 ***
β23 −2,64E+05 5,20E+04 −5.068 5.31e-07 ***
β24 4,90E+04 2,17E+04 2.257 0.024378 *
β25 1,08E+05 3,06E+04 3.545 0.000423 ***
β26 −3,07E+04 1,37E+04 −2.244 0.025199 *

Model 5 Estimate Std. Error t value Pr(> |t|)

β0 7,46E+03 1,19E+03 6.266 6.92e-10 ***
β1 1,18E+06 1,62E+06 0.732 0.464505
β2 4,13E+06 3,97E+06 1.041 0.298197
β3 −1,48E+06 1,97E+06 −0.754 0.451224
β4 5,84E+04 6,22E+04 0.938 0.348512
β5 −4,32E+04 2,33E+04 −1.858 0.063575 .
β6 −1,53E+03 7,45E+02 −2.049 0.040855 *
β7 2,09E+02 8,55E+01 2.443 0.014849 *
β8 2,10E+02 4,51E+02 0.465 0.641789
β9 −3,03E+05 1,66E+05 −1.833 0.067247 .
β10 5,14E+01 5,64E+04 0.001 0.999274
β11 4,05E+03 2,31E+03 1.750 0.080635 .
β12 −1,70E+02 2,04E+02 −0.833 0.404931
β13 1,11E+03 1,13E+03 0.981 0.327124
β14 9,58E+04 8,07E+04 1.187 0.235520
β15 2,21E+03 2,94E+04 0.075 0.939958
β16 −1,14E+03 1,17E+03 −0.975 0.329859
β17 5,66E+01 1,06E+02 0.533 0.594386
β18 −4,24E+02 5,72E+02 −0.741 0.459242
β19 7,01E+04 7,96E+03 8.812 < 2e-16 ***
β20 −3,67E+04 5,74E+03 −6.389 3.27e-10 ***
β21 −2,55E+05 3,53E+04 −7.223 1.49e-12 ***
β22 5,66E+04 1,77E+04 3.195 0.001470 **
β23 1,18E+05 2,26E+04 5.234 2.27e-07 ***
β24 −4,10E+04 1,17E+04 −3.504 0.000491 ***
β25 4,55E+02 3,75E+01 12.129 < 2e-16 ***

Model 6 Estimate Std. Error t value Pr(> |t|)

β0 2,35E+03 9,58E+01 24.568 < 2e-16 ***
β1 −1,12E+04 5,55E+03 −2.019 0.0439 *
β2 2,02E+04 2,16E+03 9.358 < 2e-16 ***
β3 −9,94E+03 9,56E+02 −10.405 < 2e-16 ***
β4 1,71E+02 3,39E+02 0.503 0.6154
β5 5,82E+01 7,62E+01 0.764 0.4454
β6 −3,13E+00 6,32E+00 −0.495 0.6211
β7 −4,23E-01 4,83E-01 −0.875 0.3817
β8 8,42E+03 9,67E+02 8.708 < 2e-16 ***
β9 −6,59E+03 4,36E+02 −15.117 < 2e-16 ***
β10 −2,08E+04 1,97E+03 −10.561 < 2e-16 ***
β11 1,01E+04 8,26E+02 12.217 < 2e-16 ***
β12 1,00E+04 8,98E+02 11.130 < 2e-16 ***
β13 −4,31E+03 3,51E+02 −12.275 < 2e-16 ***
β14 5,57E+02 4,34E+01 12.841 < 2e-16 ***
β15 −8,85E+01 1,11E+01 −8.012 5.45e-15 ***

Note: Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.
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spots of pollution where it may be worth installing additional monitors
operating continuously or at least during dry seasons. With the use of
mobile stations, one could characterize the spatial pattern of air pol-
lution across a larger area with only one or a few monitors while using
the current central monitoring station as a reference point to

understand the temporal variation. The installation of air quality
monitoring networks is an important step for the future evaluation of
progress in clean air management and the assessment of its health
impact.

The predictions were based on different spatial scales which may be

Fig. 3. Comparisons between the measured and predicted PM2.5(μg/m3) for (A) Model 2 and (B) non-linear prediction (Final model). The red line represents the
regression line. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 2. (A) Comparisons between PM2.5 measured and PM2.5 predictions (μg/m3) across time (25 September 2009 to 21 October 2011). (B) Partial autocorrelation
plot of residuals before introducing the lagged relative residual and its square as additional predictor variables into the model (C) Partial residual autocorrelation plot
after adding the two variables to the model.
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Fig. 4. Spatial distribution of PM2.5 predicted concentration over the basin during different seasons. Forest fires occurs between the months of September, October
and November. (A): PM2.5 averages predicted concentration interpolated to all Brazilian states; (B): Rondônia State including the study area of Porto Velho.
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a source of uncertainties. The AOD satellite data is based on a grid cell
with 3 km resolution while PM2.5 ground-level is measured at a fixed
point. It is also important to highlight the complex relationship between
AOD and PM2.5 due the nature of the forest aerosol in Brazilian
Amazon. Other important predicting factors such as wind speed, at-
mosphere or physical-chemical components were not analysed in this
study.

Despite the uncertainties, this study is the first to predict PM2.5

concentrations using a non-linear prediction model and the higher-re-
solution MODIS AOD products in Porto Velho. By modelling the AOD-
PM2.5 relationship in a time-dependent manner reflecting seasonal
fluctuations and influences of temperature and relative humidity we
were able to develop a prediction model for PM25 with good fitting
properties.

Our model also can be applied to other sites of the region if site-
specific AOD- and meteorological data are available, to be inserted into
the prediction equation. On the other hand, as measured PM2.5 data are
only available for the reference station, the relative lag1-residuals of
PM2.5 at the reference site would have to be used for all other sites.
About the applicability of the model to other sites, the Model 5 (not
involving lagged residuals) could be applied to any other site of the
Amazon region, as AOD-values and estimates of meteorological para-
meters can be obtained for any such site based on satellite data. On the
other hand, model 6 involves an input variable which is only available
at the reference site and whose values would therefore have to be used
at all other sites. A cautious strategy might therefore consist in using
both model 5 and 6 when conducting time series analyses of deaths and
hospital admissions.

5. Conclusions

Satellite data has an important potential for the spatio-temporal
prediction of PM2.5 concentrations. It offers an alternative method to
describe the impacts of forest fires on air quality and to assess the re-
lated health effects in the Brazilian Amazon region. Our method pro-
vides valuable inputs on how to strengthen and optimize the PM2.5

monitoring networks with well-placed complementary measurement
sites.

This is needed to understand the impact of air pollution in Brazil
and to demonstrate the improvements of air quality and the related
health benefits due to the adoption of clean air policies.

Conflicts of interest

Note: The authors declare no conflict of interest.

Acknowledgement

This work was supported by the CAPES foundation [grant number
88881.068027/2014–01] from Brazil. Special thanks to Glauber G.C.
Silva (INPE/Brazil), who was always kind and available to help with
MATLAB scripting and technical solutions. This manuscript is part of a
larger project on Cardiovascular diseases and the exposure to forest fires in
Porto Velho municipality, Rondônia state, Brazil that was submitted and
accepted by the Research Ethics Committee of the Sergio Arouca
National Public Health School (Comitê de Ética em Pesquisa da Escola
Nacional de Saúde Pública Sergio Arouca – ENSP/FIOCRUZ) according to
Resolution number 466/2012 from National Research Ethics Council
(Conselho Nacional de Pesquisa – CONEP) under CAAE number
41732615.4.0000.5 240.

References

Arbex, M.A., de Souza Conceição, G.M., Cendon, S.P., Arbex, F.F., Lopes, A.C., Moysés,
E.P., et al., 2009 Oct. Urban air pollution and chronic obstructive pulmonary disease-
related emergency department visits. J. Epidemiol. Community Health 63 (10),

777–783. http://dx.doi.org/10.1136/jech.2008.078360.
Becker, B.K., 2005. Geopolítica da Amazônia. Estud. Avançados 1 (53), 71–86.
Brauer, M., Freedman, G., Frostad, J., van Donkelaar, A., Martin, R.V., Dentener, F., Van

Dingenen, R., Estep, K., Amini, H., Apte, J.S., Balakrishnan, K., Barregard, L., Broday,
D.M., Feigin, V., Ghosh, S., Hopke, P.K., Knibbs, L.D., Kokubo, Y., Liu, Y., Ma, S.,
Morawska, L., Sangrador, J.L.T., Shaddick, G., Anderson, H.R., Vos, T., Forouzanfar,
M.H., Burnett, R.T., Cohen, A., 2015 Nov 23. Ambient air pollution exposure esti-
mation for the Global Burden of Disease 2013. Environ. Sci. Tech. http://dx.doi.org/
10.1021/acs.est.5b03709.

Brook, R.D., Rajagopalan, S., Pope III, C.A., Brook, J.R., Bhatnagar, A., Diez-Roux, A.V.,
Holguin, F., Hong, Y., Luepker, R.V., Mittleman, M.A., Peters, A., Siscovick, D., Smith,
S.C., Whitsel, L., Kaufman, J.D., 2010. Particulate matter air pollution and cardio-
vascular disease: an update to the scientific statement from the American Heart
Association. J. AHA. Circ. 2331–2378. http://dx.doi.org/10.1161/CIR.
0b013e3181dbece1.

Cohen, A.J., Anderson, H.R., Ostro, B., Pandey, K.D., Krzyzanowski, M., Künzli, N.,
Gutschmidt, K., Pope, A., Romieu, I., Samet, J.M., Smith, K., 2005. The global burden
of disease due to outdoor air pollution. J. Toxicol. Environ. Health, Part A 68,
1301–1307. http://dx.doi.org/10.1080/15287390590936166.

Fearnside, P.M., Julho 2005. Desmatamento na Amazônia brasileira: história, índices e
conseqüências. MEGADIVERSIDADE 1 (1) Available: http://philip.inpa.gov.br/publ_
livres/2005/Desmatamento%20historia-Megadiversidade.pdf Accessed: May/2016.

Global Burden of Diseases (GBD), 2010. Institute for Health Metrics and Evaluation 2013.
http://vizhub.healthdata.org/irank/heat.php.

Goncalves, K.S., Siqueira, A.S.P., Castro, H.A., Hacon, S.S., 2014. Indicator of socio-en-
vironmental vulnerability in the western Amazon. The case of the city of Porto Velho,
state of Rondônia, Brazil. Ciência Saúde Coletiva 19 (9), 3809–3817. http://dx.doi.
org/10.1590/1413-81232014199.14272013.

Gonçalves, K.S., Castro, H.A., Hacon, S.S., 2012. As queimadas na região amazônica e o
adoecimento respiratório. Rev Ciência e Saúde Coletiva 17 (6), 1523–1532. https://
doi.org/10.1590/S1413-81232012000600016.

Hoff, R.M., Christopher, S.A., 2009. Remote sensing of particulate pollution from space:
have we reached the promised land? J. Air Waste Manag. Assoc. 59, 645–675. http://
dx.doi.org/10.3155/1047-3289.59.6.645.

de Hoogh, Kees, Héritier, Harris, Stafoggia, Massimo, Künzli, Nino, Kloog, Itai, 2017.
Modelling daily PM2.5 concentrations at high spatio-temporal resolution across
Switzerland. Environ. Pollut ISSN 0269–7491. https://doi.org/10.1016/j.envpol.
2017.10.025.

Hopke, Philip K., Xie, Ying, Raunemaa, Taisto, Biegalski, Steven, Landsberger, Sheldon,
Maenhaut, Willy, Artaxo, Paulo, Cohen, David, 1997. Characterization of the gent
stacked filter unit PM10 sampler. Aerosol. Sci. Technol. 27 (6), 726–735. http://dx.
doi.org/10.1080/02786829708965507.

Kloog, I., Nordio, F., Coull, B.A., Schwartz, J., 2012. Incorporating local land use re-
gression and satellite aerosol optical depth in a hybrid model of spatiotemporal
PM2.5 exposures in the mid-Atlantic states. Environ. Sci. Tech. 46 (21),
11913–11921. http://dx.doi.org/10.1021/es302673e.

Kloog, I., Chudnovsky, A.A., Just, A.C., Nordio, F., Koutrakis, P., Coull, B.A., Lyapustin,
A., Wang, Y., Schwartz, J., 2014. A new hybrid spatio-temporal model for estimating
daily multi-year PM 2.5 concentrations across northeastern USA using high resolution
aerosol optical depth data. Atmos. Environ. 95, 581–590. http://dx.doi.org/10.1016/
j.atmosenv.2014.07.014.

Künzli, N., Kutlar Joss, M.K., Gintowt, E., 2015. Global standards for global health in a
globalized economy! [Editorial]. Int. J. Publ. Health 60, 757–759. http://dx.doi.org/
10.1007/s00038-015-0729-0.

Lee, H.J., Liu, Y., Coull, B.A., Schwartz, J., Koutrakis, P., 2011. A calibration method of
MODIS AOD data to predict PM2.5. Atmos. Chem. Phys. 11, 7991–8002. http://dx.
doi.org/10.5194/acp-11-7991-2011.

Levy, R.C., Remer, L.A., Mattoo, S., Vermote, E.F., Kaufman, Y.J., 2007. Second-genera-
tion operational algorithm: retrieval of aerosol properties over land from inversion of
Moderate Resolution Imaging Spectroradiometer spectral reflectance. J. Geophys.
Res. 112, D13211. http://dx.doi.org/10.1029/2006JD007811.

Levy, R.C., Remer, L.A., Kleidman, R.G., Mattoo, S., Ichoku, C., Kahn, R., Eck, T.F., 2010.
Global evaluation of the Collection 5 MODIS dark-target aerosol products over land.
Atmos. Chem. Phys. 10, 10399–10420. http://dx.doi.org/10.5194/acp-10-10399-
2010.

Liu, Y., Park, R.J., Jacob, D.J., Li, Q.B., Kilaru, V., Sarnat, J.A., 2004. Mapping annual
mean ground-level PM2.5 concentrations using Multiangle Imaging
Spectroradiometer aerosol optical thickness over the contiguous United States. J.
Geophys. Res. 109, D22206. http://dx.doi.org/10.1029/2004JD005025.

Liu, Y., Sarnat, J.A., Kilaru, V., Jacob, D.J., Koutrakis, P., 2005. Estimating ground-level
PM2.5 in the eastern United States using satellite remote sensing. Environ. Sci.
Technol. 39, 3269–3278.

Liu, Y., Franklin, M., Kahn, R., Koutrakis, P., 2007a. Using aerosol optical thickness to
predict ground-level PM2.5 concentrations in the St. Louis area: a comparison be-
tween MISR and MODIS, Remote Sens. Environ. Times 107, 33–44.

Liu, Y., Koutrakis, P., Kahn, R., 2007b. Estimating fine particulate matter component
concentrations and size distributions using satellite-retrieved fractional aerosol op-
tical depth: Part 1 – method development. J. Air Waste Manag. Assoc. 57,
1351–1359.

Liu, Y., Koutrakis, P., Kahn, R., Turquety, S., Yantosca, R.M., 2007c. Estimating fine
particulate matter component concentrations and size distributions using satellite-
retrieved fractional aerosol optical depth: Part 2 – a case study. J. AirWaste Manag.
Assoc. 57, 1360–1369.

Liu, Y., Paciorek, C.J., Koutrakis, P., 2009. Estimating regional spatial and temporal
variability of PM2.5 concentrations using satellite data, meteorology, and land use
information. Environ. Health Perspect. 117, 886–892.

K.d.S. Gonçalves et al. Atmospheric Environment 184 (2018) 156–165

164

http://dx.doi.org/10.1136/jech.2008.078360
http://refhub.elsevier.com/S1352-2310(18)30219-X/sref2
http://dx.doi.org/10.1021/acs.est.5b03709
http://dx.doi.org/10.1021/acs.est.5b03709
http://dx.doi.org/10.1161/CIR.0b013e3181dbece1
http://dx.doi.org/10.1161/CIR.0b013e3181dbece1
http://dx.doi.org/10.1080/15287390590936166
http://philip.inpa.gov.br/publ_livres/2005/Desmatamento%20historia-Megadiversidade.pdf
http://philip.inpa.gov.br/publ_livres/2005/Desmatamento%20historia-Megadiversidade.pdf
http://vizhub.healthdata.org/irank/heat.php
http://dx.doi.org/10.1590/1413-81232014199.14272013
http://dx.doi.org/10.1590/1413-81232014199.14272013
https://doi.org/10.1590/S1413-81232012000600016
https://doi.org/10.1590/S1413-81232012000600016
http://dx.doi.org/10.3155/1047-3289.59.6.645
http://dx.doi.org/10.3155/1047-3289.59.6.645
https://doi.org/10.1016/j.envpol.2017.10.025
https://doi.org/10.1016/j.envpol.2017.10.025
http://dx.doi.org/10.1080/02786829708965507
http://dx.doi.org/10.1080/02786829708965507
http://dx.doi.org/10.1021/es302673e
http://dx.doi.org/10.1016/j.atmosenv.2014.07.014
http://dx.doi.org/10.1016/j.atmosenv.2014.07.014
http://dx.doi.org/10.1007/s00038-015-0729-0
http://dx.doi.org/10.1007/s00038-015-0729-0
http://dx.doi.org/10.5194/acp-11-7991-2011
http://dx.doi.org/10.5194/acp-11-7991-2011
http://dx.doi.org/10.1029/2006JD007811
http://dx.doi.org/10.5194/acp-10-10399-2010
http://dx.doi.org/10.5194/acp-10-10399-2010
http://dx.doi.org/10.1029/2004JD005025
http://refhub.elsevier.com/S1352-2310(18)30219-X/sref20
http://refhub.elsevier.com/S1352-2310(18)30219-X/sref20
http://refhub.elsevier.com/S1352-2310(18)30219-X/sref20
http://refhub.elsevier.com/S1352-2310(18)30219-X/sref21
http://refhub.elsevier.com/S1352-2310(18)30219-X/sref21
http://refhub.elsevier.com/S1352-2310(18)30219-X/sref21
http://refhub.elsevier.com/S1352-2310(18)30219-X/sref22
http://refhub.elsevier.com/S1352-2310(18)30219-X/sref22
http://refhub.elsevier.com/S1352-2310(18)30219-X/sref22
http://refhub.elsevier.com/S1352-2310(18)30219-X/sref22
http://refhub.elsevier.com/S1352-2310(18)30219-X/sref23
http://refhub.elsevier.com/S1352-2310(18)30219-X/sref23
http://refhub.elsevier.com/S1352-2310(18)30219-X/sref23
http://refhub.elsevier.com/S1352-2310(18)30219-X/sref23
http://refhub.elsevier.com/S1352-2310(18)30219-X/sref24
http://refhub.elsevier.com/S1352-2310(18)30219-X/sref24
http://refhub.elsevier.com/S1352-2310(18)30219-X/sref24


McMichael, A.J., Wilkinson, P., Kovats, R.S., Patternden, S., Hajat, S., Armstrong, B.,
et al., 2008 Oct. International study of temperature, heat and urban mortality: the
‘ISOTHURM’ project. Int. J. Epidemiol. 37 (5), 1121–1131. http://dx.doi.org/10.
1093/ije/dyn086.

Munchak, L.A., Levy, R.C., Mattoo, S., Remer, L.A., Holben, B.N., Schafer, J.S., Hostetler,
C.A., Ferrare, R.A., 2013. MODIS 3km aerosol product: applications over land in an
urban/suburban region. Atmos. Meas. Tech 6 (7), 1747–1759. https://doi.org/10.
5194/amt-6-1747-2013.

Remer, L.A., Kaufman, Y.J., Tanre, D., Mattoo, S., Chu, D.A., Martins, J.V., Li, R.R.,
Ichoku, C., Levy, R.C., Kleidman, R.G., et al., 2005. Environmental Science &
Technology. The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci.
62 (4), 947–973. http://dx.doi.org/10.1021/acs.est.5b01413.

Remer, L.A., Mattoo, S., Levy, R.C., Munchak, L.A., 2013. MODIS 3km aerosol product:
algorithm and global perspective. Atmos. Meas. Tech. 6, 1829–1844. http://dx.doi.
org/10.5194/amt-6-1829-2013. www.atmos-meas-tech.net/6/1829/2013/.

Ruckerl, R., Schneider, A., Breitner, S., Cyrys, J., Peters, A., 2011 Aug. Health effects of
particulate air pollution: a review of epidemiological evidence. Inhal. Toxicol. 23
(10), 555–592. http://dx.doi.org/10.3109/08958378.2011.593587.

World Health Organization (WHO), 2006. Air Quality Guidelines for Particulate Matter,
Ozone, Nitrogen Dioxide and Sulfur Dioxide—global Update 2005 Geneva. WHO
Office for Europe. http://www.euro.who.int/__data/assets/pdf_file/0005/78638/
E90038.pdf.

World Health Organization (WHO), 2014. 7 million Premature Deaths Annually Linked to
Air Pollution. http://www.who.int/mediacentre/news/releases/2014/air-pollution/
en/.

Xie, Yuanyu, Wang, Yuxuan, Zhang, Kai, Dong, Wenhao, Baolei, Lv, Bai, Yuqi, 2015. Daily
estimation of ground-level PM2.5 concentrations over Beijing using 3km resolution
MODIS AOD. Environ. Sci. Technol. 49 (20), 12280–12288. http://dx.doi.org/10.
1021/acs.est.5b01413.

Ye, X., Wolff, R., Yu, W., Vaneckova, P., Pan, X., Tong, S., 2011 Aug. Ambient tem-
perature and morbidity: a review of epidemiological evidence. Environ. Health
Perspect. http://dx.doi.org/10.1289/ehp.1003198.

Yi, O., Hong, Y.C., Kim, H., 2010 Jan. Seasonal effect of PM(10) concentrations on
mortality and morbidity in Seoul, Korea: a temperature-matched case-crossover
analysis. Environ. Res. 110 (1), 89–95. http://dx.doi.org/10.1016/j.envres.2009.09.
009.

K.d.S. Gonçalves et al. Atmospheric Environment 184 (2018) 156–165

165

http://dx.doi.org/10.1093/ije/dyn086
http://dx.doi.org/10.1093/ije/dyn086
https://doi.org/10.5194/amt-6-1747-2013
https://doi.org/10.5194/amt-6-1747-2013
http://dx.doi.org/10.1021/acs.est.5b01413
http://dx.doi.org/10.5194/amt-6-1829-2013
http://dx.doi.org/10.5194/amt-6-1829-2013
http://dx.doi.org/10.3109/08958378.2011.593587
http://www.euro.who.int/__data/assets/pdf_file/0005/78638/E90038.pdf
http://www.euro.who.int/__data/assets/pdf_file/0005/78638/E90038.pdf
http://www.who.int/mediacentre/news/releases/2014/air-pollution/en/
http://www.who.int/mediacentre/news/releases/2014/air-pollution/en/
http://dx.doi.org/10.1021/acs.est.5b01413
http://dx.doi.org/10.1021/acs.est.5b01413
http://dx.doi.org/10.1289/ehp.1003198
http://dx.doi.org/10.1016/j.envres.2009.09.009
http://dx.doi.org/10.1016/j.envres.2009.09.009

	Development of non-linear models predicting daily fine particle concentrations using aerosol optical depth retrievals and ground-based measurements at a municipality in the Brazilian Amazon region
	Introduction
	Material and methods
	Ground-level PM2.5 data
	MODIS 3 km AOD retrieval
	Statistical model and validation

	Results
	Descriptive statistics
	Non-linear prediction models

	Discussion
	Conclusions
	Conflicts of interest
	Acknowledgement
	References




