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ABSTRACT  23 
 24 

Epidemiological studies generally use particulate matter measurements with diameter 25 

less 2.5µm (PM2.5) from monitoring networks. Satellite aerosol optical depth (AOD) 26 

data has considerable potential in predicting PM2.5 concentrations, and thus provides an 27 

alternative method for producing knowledge regarding the level of pollution and its 28 

health impact in areas where no ground PM2.5 measurements are available. This is the 29 

case in the Brazilian Amazon rainforest region where forest fires are frequent sources of 30 

high pollution. In this study, we applied a non-linear model for predicting PM2.5 31 

concentration from AOD retrievals using interaction terms between average 32 

temperature, relative humidity, sine, cosine of date in a period of 365,25 days and the 33 

square of  the lagged relative residual. Regression performance statistics were tested 34 

comparing the goodness of fit and R2 based on results from linear regression and non-35 

linear regression for six different models. The regression results for non-linear 36 

prediction showed the best performance, explaining on average 82% of the daily PM2.5 37 

concentrations when considering the whole period studied. In the context of Amazonia, 38 

it was the first study predicting PM2.5 concentrations using the latest high-resolution 39 

AOD products also in combination with the testing of a non-linear model performance. 40 

Our results permitted a reliable prediction considering the AOD-PM2.5 relationship and 41 

set the basis for further investigations on air pollution impacts in the complex context of 42 

Brazilian Amazon Region. 43 

 44 
1. INTRODUCTION 45 

 46 
In spite of the efforts to improve air quality during the past decades, levels of air 47 

pollution experienced by human populations continue to cause a large burden of 48 

disease.1,2,3 Atmospheric aerosols and particulate matter that are breathable (< 2.5 µm 49 

diameter = PM2.5) and inhalable (< 10 µm = PM10), generated from natural and 50 

anthropogenic emission sources present known effects for a number of causes of death, 51 

particularly the increase in cardio-respiratory diseases in areas with high 52 

concentrations.4,5   53 

Intensive and indiscriminate occurrence of forest fire has become a serious 54 

environmental problem in Brazil, affecting ecosystems’ balance and human health with 55 

consequences at the local, regional and global level.6,7 Brazilian Amazon region has 56 

geographic and environmental circumstances that are distinct from other world regions. 57 
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For this reason, the occurrence of fire and emissions of PM2.5 exposes every year 58 

increasingly large portions of vulnerable populations.8,9  59 

To understand the association between PM2.5 and effects on human health, 60 

epidemiological studies have employed PM2.5 measurements from monitoring sites. 61 

However, due to cost and lack of appropriate infrastructure, especially in rural and 62 

remote areas, no fixed site PM2.5 measurements are available in many regions of Brazil. 63 

This is a major limitation for estimating exposure to PM2.5 and assessing health impacts 64 

associated with forest fires as one of its major source.10,11,12,13,14,15  65 

An alternative approach to estimate the air quality in areas without direct PM2.5 66 

measurements is by means of satellite remote sensing using aerosols optical depth 67 

(AOD). AOD is an electromagnetic radiation measure and reflects the integrated 68 

number of particles at a given wavelength. It is an important satellite-retrieved property 69 

for predicting the PM2.5 concentrations due repeated observations of the atmosphere and 70 

its extensive spatial coverage.16 The AOD has been successfully used in statistical 71 

models for estimating PM2.5 levels. As shown by previous studies, parameters such as 72 

local meteorology and land use information influence the relationship between AOD 73 

and daily PM2.5 concentrations, which need to be considered as additional 74 

predictors.10,17,18,19,20,21,22,23,24 75 

Traditionally, the health exposure studies have used the standard MODIS (Moderate 76 

Resolution Imaging Spectroradiometer) AOD product of the “Dark Target” algorithm 77 

published by Levy et al. (2007, 2010), which has a resolution of 10 x 10 km². Later, 78 

Remer et al. (2013, 2005) described AOD algorithm applying a higher resolution of 3 X 79 

3 Km².25,26,27,28 80 

Concerning the applicability of the statistical methods for predicting PM2.5 81 

concentration using AOD retrievals, de Hoogh K et al (2017)29 used a higher spatial 82 

resolution for modelling daily PM2.5 concentrations across Switzerland during the 83 

period between 2003 to 2013. Their models result explained on average 73% of the total 84 

,71% of the spatial and 75% of the temporal variation (all cross validated) in measured 85 

PM2.5 concentrations. Kloog Itai et al. (2017)30 described a new hybrid spatio-temporal 86 

model for estimating daily PM2.5 concentrations across northeastern USA using high 87 

resolution AOD data. Their results showed a high predictive accuracy at high spatial 88 

resolutions using a mixed model regressing PM2.5 measurements with an excellent 89 

model performance (R2=0.88).  90 

 91 
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These recent studies still have the challenge of reducing exposure error, although 92 

shows better fits than previous models. In spite our model showed a good performance, 93 

it is important to reproduce it in another region with di�erent meteorological and 94 

geographical patterns. Our model can be applied to other sites if site-specific AOD and 95 

meteorological data are available, to be inserted into the prediction equation. The lagged 96 

relative residual added as a further predictor variable it is cautious strategy to remove 97 

the serial autocorrelation and to further improve the model. As another important 98 

challenge is that AOD data availability is much greater in the dry seasons compared to 99 

the rainy period. This is mostly due to heavily clouded days which results in missing 100 

AOD data. This non-random lack of AOD readings could negatively a�ect predictive 101 

performance. Also, treating large areas, such as Brazilian Amazon region, can add 102 

additional selection bias since there may be meteorological variations in the daily 103 

calibration between PM2.5 and AOD.30 104 

In this paper we developed a non-linear model predicting daily fine particle 105 

concentrations using AOD retrievals at 3 x 3 km resolution and ground-based 106 

measurements at a municipality of Porto Velho, Brazil during the period between 2009 107 

to 2011. For Brazilian Amazon region, it is the first study to develop this approach 108 

considering a non-linear model predicting PM2.5 concentrations. This study assessment 109 

is part of an investigation that aims at analysing the impact of PM2.5 exposure on 110 

cardiovascular disease in Porto Velho. 111 

 112 

2. MATERIAL AND METHODS  113 

2.1. Ground-level PM2.5 data 114 

Daily averages were derived during the period from 25 September 2009 to 21 115 

October 2011 with a total of 757 days. Over the study period, PM2.5 concentrations were 116 

measured for 24h at one air quality monitoring station in Porto Velho municipality, 117 

which was implanted in partnership between Institute of Physics at University of São 118 

Paulo (USP), University of Rondônia (UNIR), Environmental Biogeochemistry 119 

Laboratory Wolfgang H. Pfeiffer and National School of Public Health-Oswaldo Cruz 120 

Foundation (FIOCRUZ) in Brazil. The PM2.5 monitor is located at 15 km north of to the 121 

centre of urban area (Figure 1). Porto Velho municipality is the third capital in the 122 

Brazilian Amazon region with 67 districts within the urban area. With an area of 34,096 123 

km2 Porto Velho has a population of 503,000 inhabitants according to Brazilian 124 

Institute of Geography and Statistics (IBGE, Census 2010). PM2.5 measurements were 125 
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collected by means of a stacked filter unit (SFU) and were analysed gravimetrically 126 

according to the World Health Organization Air Quality Guidelines for particulate 127 

matter, ozone, nitrogen dioxide and sulfur dioxide (WHO, 2005)31.  128 

This methodology involves the sampling site (8.69º S, 63.87º W) located in a region 129 

with large land use changes and associated regional biomass burning. The SFU (Stacked 130 

Filter Unit) type samplers and the analysis follows routine gravimetric techniques33. In 131 

addition, trace elements and ionic compounds are collected, allowing for future 132 

analyses. 133 

There is an AFG sampler, which collects aerosols for elemental PIXE and black 134 

carbon analyses on the roof of the shelter, 24 hours sampling. The collection of aerosol 135 

particles using filters is a simple and very common method for sampling aerosol 136 

particles. Filters allow elemental and ionic analysis through a series of measurement 137 

techniques. The sampler collects fine and coarse particles and contains an inlet that 138 

allows the entry of particles in the range of 2 <Dp <10µm. The filters are polycarbonate, 139 

having a diameter of 47mm and are arranged in series. In the first step the particles of 140 

the coarse fraction are retained using Nucleopore filters with pores of 8µm in diameter, 141 

in the second stage, they are the fine particles that are retained using the filter 142 

Nucleopore with pores of 0.4µm. The samples collected with the AFG sampler was 143 

used to determine the mass of the aerosols by means of gravimetric analysis, the 144 

concentration of black carbon and to quantify the elemental concentration of the 145 

material deposited in the filters. 146 

 147 

2.2.MODIS 3 km AOD retrieval 148 

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a key instrument 149 

aboard the Terra and Aqua satellites of the National Aeronautics and Space 150 

Administration (NASA) and has been in operation since 1999 and 2002, respectively. 151 

While Terra passes the equator in the morning, from north to south, Aqua passes the 152 

equator from south to north in the afternoon. These satellites were used to retrieve AOD 153 

aerosol products with a 3 km resolution (MOD04_3K and MYD04_3K), operating at an 154 

altitude of approximately 700 km (http://modis-atmos.gsfc.nasa.gov/). In the Collection 155 

6, Level 2 aerosol products, the most recent 3 km AOD dark target retrieval algorithm is 156 

similar to the 10 km standard product (Collection 5, Level 2) and has three different 157 

wavelength channels of 0.47, 0.66 and 2.12 µm employed for AOD retrieval over land. 158 

The other channels are used for screening procedures (e.g., coverage of cloud, snow and 159 
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ice).25,26,32 More details on the retrieval of MODIS satellite aerosol data have previously 160 

been published by Remer et al. (2013, 2005)25,28 and Levy et al. (2007, 2010)26,27. For 161 

the AOD daily averages, we used the algorithm retrieval in MATLAB (version 2015a, 162 

MathWorks) and the software ArcGIS (version 10, ESRI) to create 820 grid cells of 3 x 163 

3-km covering the study area for spatial analyses. 164 

 165 

2.3. Statistical model and validation  166 

In this study we considered five different types of prediction models of PM2.5 167 

concentrations from AOD retrievals. They were all of the form  168 

PM2.5 = exp( linear predictor ), with the linear predictor involving terms composed of 169 

AOD and other influencing factors. The advantage of such a model over one for log- 170 

transformed outcome data is that it provides estimates of mean exposure levels while 171 

estimates of geometric mean levels are obtained when modelling log-transformed 172 

outcome data and then exponentiating the resulting predictions (which are on the log-173 

scale). In Model 1, we took the linear predictor to be a cubic polynomial in AOD with 174 

time-independent coefficients: 175 

(Model 1) 176 

          PM2.5 = exp( α + β1(AOD) + β2 (AOD)2 + β3 (AOD)3 )     177 

         178 

 In a next step, we considered the coefficients of Model 1 to be polynomials of second 179 

degree in average temperature (TEMP) and relative humidity (RH). Thus, each of the 180 

coefficients was assumed to be of the form γ0 + γ1·TEMP + γ2·RH + γ3·TEMP2 + γ4·RH2 181 

+ γ5·TEMP·RH. Multiplying these polynomials with AOD, AOD2 and AOD3 and the 182 

intercept, respectively, provided: 183 

(Model 2) 184 

PM2.5 = Model 1 · exp( β4(AOD·TEMP) + β5(AOD·TEMP2) + β6(AOD·RH) + 185 

β7(AOD·(RH2)+ β8(AOD·TEMP·RH) + β9(AOD2
·TEMP) + β10(AOD2

·TEMP2)+ 186 

β11(AOD2
·RH) + β12(AOD2

·RH2)+ β13(AOD2
·TEMP*RH) + β14(AOD3

·TEMP) + 187 

β15(AOD3
·TEMP2)+ β16(AOD3

·RH) + β17(AOD3
·RH2)+ β18(AOD3

·TEMP·RH) ) 188 

 189 

In an attempt to further improve the model, we added interaction terms between 190 

AOD, AOD2 and AOD3 with rainy season (Model 3) and tested interactions of the three 191 

AOD-terms with sine and cosine functions of date with a period of 365.25 days in the 192 

Model 4.  193 
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In the last step, we included the lagged relative residual and its square as additional 194 

predictor variables (Model 5). This was to reduce serial autocorrelation. The final model 195 

obtained after some backward elimination steps was of the form: 196 

(Final model) 197 

PM2.5 = exp(α + β1· AOD + β2·AOD2) + β3·AOD3 + β4· (AOD·TEMP) + β5(AOD·RH) 198 

+ β6(AOD·TEMP2) + β7(AOD·RH2)+ β8(AOD·cos_days) + β9(AOD·sin_days) + 199 

β10(AOD2
· cos_days) + β11(AOD2

·sin_days) + β12(AOD3
·cos_days) + 200 

β13(AOD3
·sin_days) + β14(residual)+ β15(residual)2 201 

 202 

  In these equations, PM2.5 denotes the predicted concentrations, where exp is the 203 

exponential function; cos_days and sin_days denote the cosine and sine terms of date 204 

with a period of 365,25 days; residual denotes the lagged relative residual. Relative 205 

residuals were defined as ratio between residuals and predicted values. Model 206 

performance was evaluated by comparing the predictions with the ground measurements 207 

using the adjusted coefficient of determination (R2 adj), residual standard deviation 208 

(RMSE), Akaike’s information criterion (AIC), and partial autocorrelation of residuals 209 

by lags. High values of adjusted R squared suggest that MODIS AOD data can be used 210 

to estimate ambient concentrations. Furthermore, we calculated mean, standard 211 

deviation and maximum / minimum values to summarize the descriptive statistics of our 212 

sample for the whole period, the dry season (months June to November, when forest 213 

fires occur in Brazilian Amazon region) and the rainy season (months from December 214 

to May).  215 

Daily meteorological data on average temperature and relative humidity were 216 

obtained for the period 25 September 2009 to 21 October 2011 from the monitoring 217 

station of INMET (National Meteorology Institute) in Porto Velho. The information is 218 

publicly available on the website of the institute (www.inmet.gov.br). 219 

The spatial distribution of the 3x3km resolution MODIS AOD average during the 220 

study period was derived by spatial interpolation using the inverse distance weighting 221 

(IDW). We present the results for all states in Brazil and for our study area. It is 222 

important to highlight that all regression results were presented with the original AOD 223 

and PM2.5 datasets. The software R (version 3.1.3) was used for statistical analyses. 224 

 225 

2. RESULTS  226 

3.1. Descriptive statistics 227 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
8 

 

Table 1 shows the descriptive statistics of daily measured PM2.5, values of AOD, 228 

relative humidity, average temperature and precipitation from 25 September 2009 to 21 229 

October 2011, as well as for the dry and rainy seasons. Average daily level of PM2.5  230 

from the ground-level monitor was 11µg/m³ with a standard deviation (SD) of 231 

±20µg/m³ over the three years studied. Of note, the analysis of the data for 2010, the 232 

year when one of the most extreme dry seasons in Brazilian Amazon region occurred, 233 

revealed an annual-mean of 36µg/m³ (±46µg/m³ SD).  234 

Considering the differences between seasons, the maximum daily value was 235 

exceptionally high (164µg/m³) during the dry seasons of the period studied compared to 236 

27µg/m³ in the rainy seasons. 237 

Over the entire study period, the daily AOD values observed varied from 0.03 to 238 

2.19. On average, 649 AOD values were retrieved per grid cell which corresponds to 239 

86% of the entire study period of 757 days. 240 

All the meteorological variables such as relative humidity, average temperature and 241 

precipitation were consistent with the climatic patterns expected for the Brazilian 242 

Amazon region and thus support the analysis in the regression models.  243 

 244 

3.2. Non-linear prediction models 245 

To test the performance of the five regressions models we use a total of 649 valid 246 

days for the model fitting. The comparisons between the models analysed and 247 

parameters estimated are shown in Table 2 and 3. 248 

Model 1 shows an adj R² of 0.54, RMSE of 13.59µg/m³ and AIC of 5234.3 for the 249 

whole period. Model 2 including interactions between AOD, AOD2 and AOD3 and 250 

linear and quadratic terms in temperature and relative humidity provided a better fit (R2 251 

= 0.67). After adding interactions between the three AOD-terms and rain the fit only 252 

slightly improved (R2=0.70). In Model 4 we excluded the rain term and added 253 

interactions of the three AOD-terms with sine and cosine of date with a period of 254 

365.25 days. This model performed considerably better (R2=0.77; RMSE=9.59µg/m³; 255 

AIC=4803.1).  256 

After adding the lagged relative residual and its square as additional predictors 257 

(Model 5) the adjusted R2 further increased to 0.82 (RMSE=8.60µg/m3; AIC=4797.6). 258 

This means that this non-linear prediction model explains 82% of the variance of daily 259 

PM2.5 concentrations in combination with meteorological and seasonal variables. The 260 

introduction of these two terms also led to a drastic reduction in residual 261 
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autocorrelation, in that lag1-autocorrelation of residuals was no longer significant 262 

(Figure 2). As visualized in Figure 2, the time series of predicted PM2.5 concentrations 263 

follows a very similar pattern as the measured PM2.5 confirming the high performance 264 

of the prediction models. The period from mid-July to end of Octobre 2010 – a dry 265 

period with plumes of biomass burning – is characterized by very high AOD values, 266 

reaching peaks 50-100 times above the typical values observed before and after this 267 

period. The comparisons between the measured and predicted PM2.5 concentrations for 268 

Model 1 and Model 5 are illustrated in Figure 3.  269 

The Spatial distribution of PM2.5 predicted concentration over the basin during 270 

different seasons for all Brazilian states are shown in Figure 4. The highest predicted 271 

PM2.5 concentrations were observed in the Brazilian Amazon region during the forest 272 

fires season (months between September, October and November). In our study area, 273 

PM2.5 averages reached 44µg/m³ in the urban area of Porto Velho, and 54 µg/m³ across 274 

the Rondônia state during the forest fires between 2009 and 2011. Information about the 275 

distribution of PM2.5 within the urban districts of Porto Velho and the relation with the 276 

health data will be presented in a separate manuscript about the impacts of PM2.5 on 277 

human health in Brazilian Amazon region. 278 

 279 

3. DISCUSSION 280 

The results of our final non-linear prediction model for PM2.5 showed a good 281 

performance, explaining on average 82% of the variance in measured PM2.5 282 

concentrations during the period studied. This result is similar and in accordance with 283 

the findings presented by Lee et al (2011)10 and Xie et al (2015)24, who showed 284 

prediction models that explained 92% and 82% of the variance in PM2.5 concentrations 285 

in the North-eastern, US and in Beijing, China, respectively. Our model has the 286 

advantage that it does not produce negative predictions and fits the mean of the data as a 287 

function of the predictor variables. Moreover, by including the lagged relative residual 288 

and its square as additional predictor variables it was possible to remove the significant 289 

lag1-autocorrelation, and to further improve the model fit. 290 

Observing the temporal distribution of predicted and measured PM2.5 concentrations 291 

it is important to highlight the enormous peak of PM2.5 observed between days 300 and 292 

400 during the dry periods in our study area with the maximum daily value of 293 

164µg/m³. This value more than 6.5 times higher than the daily mean guideline value 294 

proposed by WHO to protect public health (25µg/m³). During the dry season, this value 295 
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was exceeded on X% of all days. As a consequence, the long-term mean concentration 296 

during the dry period was 2 times above the WHO annual mean guideline value, set at 297 

10µg/m³. Currently, these values were adopted in only a few countries as legally 298 

binding targets, thus, policy makers accept major impacts on morbidity and mortality.34 299 

On the other hand, during the rainy seasons concentrations were low (2µg/m³; ±3µg/m³ 300 

SD) and fully in line with both, the daily and annual targets proposed by WHO. This 301 

confirms the dominant role of fires as source of ambient air pollution in the Amazon 302 

region. This result highlight the importance to set limits for PM2.5 in the Brazil Air 303 

quality Standards defined by the National Environmental Agency (CONAMA) that 304 

currently set limits only for PM10.
34 Our data provide unique input to evaluate whether 305 

the CONAMA may add to the Brazil Air Q S limits for PM2.5 rather than PM10 alone. 306 

This will be particularly worth if sources and spatio-temporal patterns of the two 307 

markers of air pollution largely vary across Brazil.   308 

The non-linear prediction model demonstrated a high performance in predicting the 309 

daily PM2.5 concentrations. However, some limitations, such as cloud properties and 310 

uncertainties need to be mentioned. The use of only one air monitoring station for the 311 

development and evaluation of the model is a major limitation of this study. However, 312 

although this limits our ability to draw firm conclusions about the applicability of the 313 

model across Brazil, it does provide a valid approach to predict PM2.5 across our main 314 

study area. PM2.5 is spatially rather homogenously distributed, thus extrapolation of the 315 

model from the measurement site to the adjacent urban area of Porto Velho is expected 316 

to be reliable. The model gives also good indications of possible hot spots of pollution 317 

where it may be worth installing additional monitors operating continuously or at least 318 

during dry seasons. With the use of mobile stations, one could characterize the spatial 319 

pattern of air pollution across a larger area with only one or a few monitors while using 320 

the current central monitoring station as a reference point to understand the temporal 321 

variation. The installation of air quality monitoring networks is an important step for the 322 

future evaluation of progress in clean air management and the assessment of its health 323 

impact. 324 

The predictions were based on different spatial scales which may be a source of 325 

uncertainties. The AOD satellite data is based on a grid cell with 3km resolution while 326 

PM2.5 ground-level is measured at a fixed point. It is also important to highlight the 327 

complex relationship between AOD and PM2.5 due the nature of the forest aerosol in 328 
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Brazilian Amazon. Other important predicting factors such as wind speed, atmosphere 329 

or physical-chemical components were not analysed in this study.  330 

Despite the uncertainties, this study is the first to predict PM2.5 concentrations using 331 

a non-linear prediction model and the higher-resolution MODIS AOD products in Porto 332 

Velho. By modelling the AOD-PM2.5 relationship in a time-dependent manner reflecting 333 

seasonal fluctuations and influences of temperature and relative humidity we were able 334 

to develop a prediction model for PM25 with good fitting properties. 335 

Our model also can be applied to other sites of the region if site-specific AOD- and 336 

meteorological data are available, to be inserted into the prediction equation. On the 337 

other hand, as measured PM2.5 data are only available for the reference station, the 338 

relative lag1-residuals of PM2.5 at the reference site would have to be used for all other 339 

sites. About the applicability of the model to other sites, the Model 5 (not involving 340 

lagged residuals) could be applied to any other site of the Amazon region, as AOD-341 

values and estimates of meteorological parameters can be obtained for any such site 342 

based on satellite data. On the other hand, model 6 involves an input variable which is 343 

only available at the reference site and whose values would therefore have to be used at 344 

all other sites. A cautious strategy might therefore consist in using both model 5 and 6 345 

when conducting time series analyses of deaths and hospital admissions. 346 

  347 

4. CONCLUSIONS 348 

Satellite data has an important potential for the spatio-temporal prediction of PM2.5 349 

concentrations. It offers an alternative method to describe the impacts of forest fires on 350 

air quality and to assess the related health effects in the Brazilian Amazon region. Our 351 

method provides valuable inputs on how to strengthen and optimize the PM2.5 352 

monitoring networks with well-placed complementary measurement sites.  353 

This is needed to understand the impact of air pollution in Brazil and to demonstrate 354 

the improvements of air quality and the related health benefits due to the adoption of 355 

clean air policies. 356 
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 544 

 545 

TABLES AND FIGURES 546 

 547 

  Entire period (25 September 2009 to 21 October 2011) 

Variable Na Mean SDb Min Max 

MODIS AOD 3km (unitless) 649 0,29 0,36 0,03 2,19 

PM2.5 (µg/m³) 649 11,36 20,06 1.68 164,41 

Average temperature (ºC) 649 26,82 1,41 16,24 31,26 

Relative humidity (%) 649 84,93 5,80 61,50 98,75 

Preciptation (mm) 649 5,06 11,37 0 71,40 

  Dry season (June to November) 

Variable N Mean SD Min Max 
MODIS AOD 3km (unitless) 323 0,44 0,46 0,03 2,19 

PM2.5 (µg/m³) 323 20,51 25,19 1.68 164,41 

Average temperature (ºC) 323 27,00 1,68 16,24 31,26 

Relative humidity (%) 323 82,18 5,90 61,50 98,75 

Preciptation (mm) 323 0 0 0 0 

  Rainy season (December to May) 

Variable N Mean SD Min Max 
MODIS AOD 3km (unitless) 326 0,14 0,07 0.03 0,76 

PM2.5 (µg/m³) 326 2,28 2,87 1,68 26,62 

Average temperature (ºC) 326 26,66 1,07 22,07 29,05 

Relative humidity (%) 326 87,65 4,21 73,80 98,00 

Preciptation (mm) 326 7,76 14,09 0,10 71,40 

  Pearson correlation  
Variable AOD PM2.5 TEMP RH PRECIP 

MODIS AOD 3km (unitless) 1 
PM2.5 (µg/m³) 0.5811 1 
Average temperature (ºC) 0.245 0.1007 1 
Relative humidity (%) -0.3957 -0.4455 -0.4411 1 
Preciptation (mm) -0.101 -0.1454 -0.1638 0.2413 1 

                            Note: a= Number of values observed in days; b=Standard deviation (SD) 548 
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Table 1: Descriptive statistics of the parameters analysed during the study period 549 

(September, 25th 2009 to October, 21th 2011). 550 

 551 

 552 

 553 

 554 

 555 

 556 

 557 

 558 

 559 

Prediction models N dfa R² R2 adjb RMSEc 
Model 1 649 3 0.544 0.541 13.59 
Model 2 649 18 0.683 0.674 11.47 
Model 3 649 21 0.707 0.697 11.04 
Model 4 649 27 0.782 0.772 9.58 
Model 5 649 15 0.823 0.816 8.60 

Note: a=degrees of freedom; b= R-squared adjusted; c= Residual standard deviation (RMSE). 560 
Model 1 = simple model with linear, quadratic and cubic term of AOD;  561 
Model 2 = Model 1 + interactions of AOD, AOD2 and AOD3 with linear and quadratic terms in 562 
temperature and relative humidity;  563 
Model 3 = Model 2 + interactions between AOD, AOD2 and AOD3 and rain;   564 
Model 4 = Model 3 + interactions of AOD, AOD2 and AOD3 with sine and cosines of date with a period 565 
of 365.25 days (without the term for rainy season); 566 
Model 5 = Model 4 + lagged relative residual and its square as additional predictor variables; 567 
 568 
Table 2: Comparison between prediction models. 569 
 570 
 571 

 572 

Model 1 Estimate Std. Error t value Pr(>|t|) 
β0 113.565 0.5333 21.295 < 2e-16 *** 
β1 3.733.880 135.860 27.483 < 2e-16 *** 
β2 369.936 135.860 2.723 0.00665 ** 
β3 319.761 135.860 2.354 0.01889 * 

Model 2 Estimate Std. Error t value Pr(>|t|) 
β0 1,10E+06 1,89E+05 5.803 1.03e-08 *** 
β1 8,13E+07 9,91E+06 8.202 1.33e-15 *** 
β2 3,19E+07 8,50E+06 3.751 0.000193 *** 
β3 2,32E+06 5,36E+06 0.432 0.665709 
β4 8,85E+04 7,41E+04 1.195 0.232703 
β5 -1,62E+04 1,26E+04 -1.286 0.198907 
β6 -2,44E+03 9,76E+02 -2.503 0.012569 * 
β7 4,02E+02 4,75E+02 0.847 0.397177 
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β8 -4,14E+05 2,03E+05 -2.046 0.041196 * 
β9 2,82E+04 3,92E+04 0.720 0.472077 

β10 9,39E+03 3,01E+03 3.119 0.001895 ** 
β11 5,05E+01 1,17E+02 0.431 0.666751 
β12 -1,19E+03 1,17E+03 -1.017 0.309673 
β13 9,79E+04 9,91E+04 0.988 0.323655 
β14 -5,25E+04 2,15E+04 -2.445 0.014744 * 
β15 -3,73E+03 1,53E+03 -2.437 0.015070 * 
β16 9,53E+01 7,64E+01 1.247 0.212722 
β17 1,34E+03 5,54E+02 2.420 0.015795 * 

Model 3 Estimate Std. Error t value Pr(>|t|) 
β0 1,09E+06 1,85E+05 5.870 7.05e-09 *** 
β1 8,22E+07 9,58E+06 8.584 < 2e-16 *** 
β2 3,36E+07 8,29E+06 4.057 5.60e-05 *** 
β3 2,95E+06 5,21E+06 0.566 0.571754 
β4 8,48E+04 7,17E+04 1.183 0.237140 
β5 -1,68E+04 1,22E+04 -1.379 0.168533 
β6 -2,47E+03 9,43E+02 -2.616 0.009109 ** 
β7 5,13E+02 4,60E+02 1.116 0.264968 
β8 -4,16E+05 1,96E+05 -2.123 0.034177 * 
β9 4,21E+04 3,87E+04 1.088 0.276841 

β10 9,67E+03 2,91E+03 3.325 0.000935 *** 
β11 -1,90E+01 1,19E+02 -0.159 0.873546 
β12 -1,46E+03 1,14E+03 -1.285 0.199287 
β13 8,94E+04 9,59E+04 0.932 0.351465 
β14 -5,79E+04 2,12E+04 -2.734 0.006433 ** 
β15 -3,69E+03 1,48E+03 -2.498 0.012757 * 
β16 1,20E+02 7,65E+01 1.572 0.116357 
β17 1,46E+03 5,39E+02 2.708 0.006950 ** 
β18 -1,01E+05 2,00E+04 -5.063 5.44e-07 *** 
β19 3,62E+05 1,18E+05 3.063 0.002283 ** 
β20 -2,58E+05 1,33E+05 -1.935 0.053453 . 

Model 4 Estimate Std. Error t value Pr(>|t|) 
β0 5,55E+05 1,68E+05 3.305 0.001003 ** 
β1 3,85E+07 1,04E+07 3.692 0.000242 *** 
β2 4,62E+06 9,84E+06 0.469 0.638882 
β3 -6,61E+06 5,32E+06 -1.245 0.213777 
β4 1,04E+05 6,25E+04 1.659 0.097687 . 
β5 1,28E+02 1,08E+04 0.012 0.990548 
β6 -1,88E+03 8,21E+02 -2.291 0.022301 * 
β7 -1,21E+02 4,08E+02 -0.296 0.767175 
β8 -3,37E+05 1,72E+05 -1.956 0.050898 . 
β9 -5,94E+04 4,05E+04 -1.467 0.142785 

β10 4,84E+03 2,56E+03 1.893 0.058828 . 
β11 2,10E+02 1,19E+02 1.773 0.076650 . 
β12 9,88E+02 1,11E+03 0.894 0.371821 
β13 9,74E+04 8,57E+04 1.136 0.256252 
β14 2,08E+04 2,51E+04 0.832 0.405926 
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β15 -1,46E+03 1,30E+03 -1.129 0.259177 
β16 -8,98E+01 8,23E+01 -1.091 0.275639 
β17 -2,22E+02 5,79E+02 -0.383 0.701887 
β18 -1,24E+04 2,54E+04 -0.488 0.625602 
β19 7,89E+04 1,19E+05 0.664 0.506904 
β20 -9,50E+04 1,24E+05 -0.767 0.443244 
β21 6,99E+04 1,49E+04 4.681 3.51e-06 *** 
β22 -3,71E+04 7,47E+03 -4.966 8.83e-07 *** 
β23 -2,64E+05 5,20E+04 -5.068 5.31e-07 *** 
β24 4,90E+04 2,17E+04 2.257 0.024378 * 
β25 1,08E+05 3,06E+04 3.545 0.000423 *** 
β26 -3,07E+04 1,37E+04 -2.244 0.025199 * 

Model 5 Estimate Std. Error t value Pr(>|t|) 
β0 7,46E+03 1,19E+03 6.266 6.92e-10 *** 
β1 1,18E+06 1,62E+06 0.732 0.464505 
β2 4,13E+06 3,97E+06 1.041 0.298197 
β3 -1,48E+06 1,97E+06 -0.754 0.451224 
β4 5,84E+04 6,22E+04 0.938 0.348512 
β5 -4,32E+04 2,33E+04 -1.858 0.063575 . 
β6 -1,53E+03 7,45E+02 -2.049 0.040855 * 
β7 2,09E+02 8,55E+01 2.443 0.014849 * 
β8 2,10E+02 4,51E+02 0.465 0.641789 
β9 -3,03E+05 1,66E+05 -1.833 0.067247 . 

β10 5,14E+01 5,64E+04 0.001 0.999274 
β11 4,05E+03 2,31E+03 1.750 0.080635 . 
β12 -1,70E+02 2,04E+02 -0.833 0.404931 
β13 1,11E+03 1,13E+03 0.981 0.327124 
β14 9,58E+04 8,07E+04 1.187 0.235520 
β15 2,21E+03 2,94E+04 0.075 0.939958 
β16 -1,14E+03 1,17E+03 -0.975 0.329859 
β17 5,66E+01 1,06E+02 0.533 0.594386 
β18 -4,24E+02 5,72E+02 -0.741 0.459242 
β19 7,01E+04 7,96E+03 8.812 < 2e-16 *** 
β20 -3,67E+04 5,74E+03 -6.389 3.27e-10 *** 
β21 -2,55E+05 3,53E+04 -7.223 1.49e-12 *** 
β22 5,66E+04 1,77E+04 3.195 0.001470 ** 
β23 1,18E+05 2,26E+04 5.234 2.27e-07 *** 
β24 -4,10E+04 1,17E+04 -3.504 0.000491 *** 
β25 4,55E+02 3,75E+01 12.129 < 2e-16 *** 

Model 6 Estimate Std. Error t value Pr(>|t|) 
β0 2,35E+03 9,58E+01 24.568 < 2e-16 *** 
β1 -1,12E+04 5,55E+03 -2.019 0.0439 * 
β2 2,02E+04 2,16E+03 9.358 < 2e-16 *** 
β3 -9,94E+03 9,56E+02 -10.405 < 2e-16 *** 
β4 1,71E+02 3,39E+02 0.503 0.6154 
β5 5,82E+01 7,62E+01 0.764 0.4454 
β6 -3,13E+00 6,32E+00 -0.495 0.6211 
β7 -4,23E-01 4,83E-01 -0.875 0.3817 
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β8 8,42E+03 9,67E+02 8.708 < 2e-16 *** 
β9 -6,59E+03 4,36E+02 -15.117 < 2e-16 *** 

β10 -2,08E+04 1,97E+03 -10.561 < 2e-16 *** 
β11 1,01E+04 8,26E+02 12.217 < 2e-16 *** 
β12 1,00E+04 8,98E+02 11.130 < 2e-16 *** 
β13 -4,31E+03 3,51E+02 -12.275 < 2e-16 *** 
β14 5,57E+02 4,34E+01 12.841 < 2e-16 *** 
β15 -8,85E+01 1,11E+01 -8.012 5.45e-15 *** 

Note: Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 573 

Table 3: Description of parameters, standard error and p-value for each prediction 574 

models. 575 
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Figure 1: Study area with the locations of PM2.5 and weather monitors. Municipality 602 

of Porto Velho, Rondônia state, Brazilian Amazon region. 603 
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Figure 2: (A) Comparisons between PM2.5 measured and PM2.5 predictions (µg/m³) 634 

across time (25 September 2009 to 21 October 2011). (B) Partial autocorrelation plot of 635 

residuals before introducing the lagged relative residual and its square as additional 636 

predictor variables into the model (C) Partial residual autocorrelation plot after after 637 

adding the the two variables to the model. 638 
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 659 
Figure 3: Comparisons between the measured and predicted PM2.5(µg/m³) for (A) 660 

Model 2 and (B) non-linear prediction (Final model). The red line represents the 661 

regression line.  662 
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Figure 4: Spatial distribution of PM2.5 predicted concentration over the basin during 711 

different seasons. Forest fires occurs between the months of September, October and 712 

November. (A): PM2.5 averages predicted concentration interpolated to all Brazilian 713 

states; (B): Rondônia State including the study area of Porto Velho. 714 
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Highlights  
 

• Non-linear model was applied for predicting PM2.5 from AOD with a good 
performance; 

 
• The model can be applied to other sites if site-specific data are available; 
 
• The lagged relative residual it is cautious strategy to further improve the model; 
 
• It was the first Brazilian study predicting PM2.5 from high resolution AOD data; 


