Home Page
Main.HomePage History
Show minor edits - Show changes to markup
(:table border=0 width=95% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :) (:cellnr valign='bottom' :)

Natural aerosols in the Amazon
We study the life cycle of natural aerosols in the Amazon. We seek to understand how the forest emits volatile organic compounds, which produce aerosol particles, which serve as condensation nuclei, allowing it to rain. Our main experimental site is the Amazon Tall Tower Observatory (ATTO), a unique laboratory in tropical regions, with a 325 m tower in the middle of the Amazon rainforest, where we also measure cloud properties.
(:table:)
(:table border=0 width=95% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :) (:cellnr valign='bottom' :)

Biomass Burning Aerosols
Emissions from burning in the Amazon have important implications for regional and global climate and the health of the region's population. We use experimental sites in the Amazon to characterize burn aerosols and understand their effects on climate and health. In partnership with the Department of Atmospheric Sciences, we study the large-scale transportation of aerosols and gases emitted from burning. We use the WRF-Chem model to study transport processes from the Amazon to other regions of South America. (:table:)
(:table border=0 width=95% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :) (:cellnr valign='bottom' :)

Global Climate Change
We study relevant processes that influence the Earth's radiative balance by changing the radiation flux, such as changes in land use in the Amazon, transport of burned aerosols, and greenhouse gas emissions.
(:table:)
(:table border=0 width=95% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :) (:cellnr valign='bottom' :)

Water vapor, clouds and convection
We study the transport of water vapor from the Amazon rainforest from evapotranspiration to other regions of the continent where it can contribute to precipitation. We use tools such as complex networks and artificial intelligence to analyze how deforestation and climate change can affect this important ecosystem service. We also use remote sensing to investigate the relationship between water vapor and cloud formation in the Amazon.
(:table:)
(:table border=0 width=95% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :) (:cellnr valign='bottom' :)

Interactions between cloud aerosols and precipitation
We investigate how natural and anthropogenic aerosols influence cloud formation mechanisms and precipitation in the Amazon. We use remote sensing techniques from ground and satellites, as well as in-situ aircraft measurements to study how aerosols alter the microphysical properties of clouds. We also use numerical models such as BRAMS and WRF-Chem to simulate the impact of aerosols on clouds and to study physical processes that cannot be measured directly.
(:table:)
(:table border=0 width=95% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :) (:cellnr valign='bottom' :)

Urban air pollution
We study urban air pollution in several Brazilian cities. We develop models that quantify aerosol sources and their atmospheric processes. We also investigate the relationship between pollution levels and their effects on population health. Another approach is the study that investigates meteorology and air mass circulation over metropolitan areas and the dispersion of pollutants.
(:table:)
(:table border=0 width=200px align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=95% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)


(:table border=0 width=200px align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=95% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)


(:table border=0 width=200px align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=95% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)


(:table border=0 width=95% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=95% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)


(:table border=0 width=220px align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=200px align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=220px align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=200px align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=220px align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=200px align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=250px align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=220px align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=250px align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=220px align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=95% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=250px align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=95% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=250px align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=95% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=220px align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=10% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=95% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)


(:table border=0 width=10% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=95% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)


(:table border=0 width=45% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=95% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)


(:table border=0 width=75% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=95% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)


(:table border=0 width=75% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=95% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)


(:table border=0 width=95% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=95% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=90% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=95% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=100% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=90% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=75% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=100% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=350px align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=10% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)


(:table border=0 width=370px align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=350px align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=350px align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=370px align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=320px align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=350px align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=10% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=320px align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)


(:table border=0 width=46% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=10% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=46% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=10% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=45% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=46% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=45% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=46% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=45% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=45% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=45% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=45% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)

Global Climate Change
We study relevant processes that influence the Earth's radiative balance by changing the radiation flux, such as changes in land use in the Amazon, transport of burned aerosols, and greenhouse gas emissions.
(:table:)
(:table border=0 width=45% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :) (:cellnr valign='bottom' :)
(:table border=0 width=45% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :) (:cellnr valign='bottom' :)

Global Climate Change
We study relevant processes that influence the Earth's radiative balance by changing the radiation flux, such as changes in land use in the Amazon, transport of burned aerosols, and greenhouse gas emissions.
(:table:)
(:table border=0 width=75% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=45% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)






(:table border=0 width=47% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=45% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=47% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=45% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=78% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=47% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=48% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=47% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
Global Climate Change:
Global Climate Change
(:table border=0 width=48% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=78% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=45% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=48% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
Global Climate Change: We study relevant processes that influence the Earth's radiative balance by changing the radiation flux, such as changes in land use in the Amazon, transport of burned aerosols, and greenhouse gas emissions.
Global Climate Change:
We study relevant processes that influence the Earth's radiative balance by changing the radiation flux, such as changes in land use in the Amazon, transport of burned aerosols, and greenhouse gas emissions.
(:table border=0 width=45% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=48% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=50% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=45% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=50% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=45% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=65% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=50% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=75% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=50% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)


Natural aerosols in the Amazon We study the life cycle of natural aerosols in the Amazon. We seek to understand how the forest emits volatile organic compounds, which produce aerosol particles, which serve as condensation nuclei, allowing it to rain. Our main experimental site is the Amazon Tall Tower Observatory (ATTO), a unique laboratory in tropical regions, with a 325 m tower in the middle of the Amazon rainforest, where we also measure cloud properties.
Natural aerosols in the Amazon
We study the life cycle of natural aerosols in the Amazon. We seek to understand how the forest emits volatile organic compounds, which produce aerosol particles, which serve as condensation nuclei, allowing it to rain. Our main experimental site is the Amazon Tall Tower Observatory (ATTO), a unique laboratory in tropical regions, with a 325 m tower in the middle of the Amazon rainforest, where we also measure cloud properties.
Biomass Burning Aerosols Emissions from burning in the Amazon have important implications for regional and global climate and the health of the region's population. We use experimental sites in the Amazon to characterize burn aerosols and understand their effects on climate and health. In partnership with the Department of Atmospheric Sciences, we study the large-scale transportation of aerosols and gases emitted from burning. We use the WRF-Chem model to study transport processes from the Amazon to other regions of South America.
Biomass Burning Aerosols
Emissions from burning in the Amazon have important implications for regional and global climate and the health of the region's population. We use experimental sites in the Amazon to characterize burn aerosols and understand their effects on climate and health. In partnership with the Department of Atmospheric Sciences, we study the large-scale transportation of aerosols and gases emitted from burning. We use the WRF-Chem model to study transport processes from the Amazon to other regions of South America.

Biomass Burning Aerosols
Emissions from burning in the Amazon have important implications for regional and global climate and the health of the region's population. We use experimental sites in the Amazon to characterize burn aerosols and understand their effects on climate and health. In partnership with the Department of Atmospheric Sciences, we study the large-scale transportation of aerosols and gases emitted from burning. We use the WRF-Chem model to study transport processes from the Amazon to other regions of South America.

(:table border=0 width=75% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :) (:cellnr valign='bottom' :)

Biomass Burning Aerosols Emissions from burning in the Amazon have important implications for regional and global climate and the health of the region's population. We use experimental sites in the Amazon to characterize burn aerosols and understand their effects on climate and health. In partnership with the Department of Atmospheric Sciences, we study the large-scale transportation of aerosols and gases emitted from burning. We use the WRF-Chem model to study transport processes from the Amazon to other regions of South America.
(:table:)
(:table border=0 width=75% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :) (:cellnr valign='bottom' :)


(:table:)
(:table border=0 width=75% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :) (:cellnr valign='bottom' :)


(:table:)
(:table border=0 width=75% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :) (:cellnr valign='bottom' :)

(:table:)
(:table border=0 width=65% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=75% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=75% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=65% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)


(:table border=0 width=65% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=65% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=65% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=0 width=75% align=right bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)

Natural aerosols in the Amazon
We study the life cycle of natural aerosols in the Amazon. We seek to understand how the forest emits volatile organic compounds, which produce aerosol particles, which serve as condensation nuclei, allowing it to rain. Our main experimental site is the Amazon Tall Tower Observatory (ATTO), a unique laboratory in tropical regions, with a 325 m tower in the middle of the Amazon rainforest, where we also measure cloud properties.
(:table border=0 width=65% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :) (:cellnr valign='bottom' :)

Natural aerosols in the Amazon We study the life cycle of natural aerosols in the Amazon. We seek to understand how the forest emits volatile organic compounds, which produce aerosol particles, which serve as condensation nuclei, allowing it to rain. Our main experimental site is the Amazon Tall Tower Observatory (ATTO), a unique laboratory in tropical regions, with a 325 m tower in the middle of the Amazon rainforest, where we also measure cloud properties.
(:table:)
(:comment

Global Climate Change: We study relevant processes that influence the Earth's radiative balance by changing the radiation flux, such as changes in land use in the Amazon, transport of burned aerosols, and greenhouse gas emissions.
:)
(:cellnr valign='bottom' :) teste asfd as fdkl aslkdf lkasjkldf lakjsdkjl asdjklf akljsdfljk asdjkl fkjl asjklfalskjdfljk asjklf asljkfdkjl asdjkl fjkl as jklfajklsdfjl (:cell valign='bottom' :) asdfa asfd as fdkl aslkdf lkasjkldf lakjsdkjl asdjklf akljsdfljk asdjkl fkjl asjklfalskjdfljk asjklf asljkfdkjl asdjkl fjkl as jklfajklsdfjl
(:cellnr valign='top' :)
(:cellnr valign='bottom' :)
teste
teste asfd as fdkl aslkdf lkasjkldf lakjsdkjl asdjklf akljsdfljk asdjkl fkjl asjklfalskjdfljk asjklf asljkfdkjl asdjkl fjkl as jklfajklsdfjl
asdfa
asdfa asfd as fdkl aslkdf lkasjkldf lakjsdkjl asdjklf akljsdfljk asdjkl fkjl asjklfalskjdfljk asjklf asljkfdkjl asdjkl fjkl as jklfajklsdfjl
(:cellnr valign='top:)
(:cellnr valign='top' :)
(:cellnr valign='bottom':)
(:cellnr valign='bottom' :)
(:cellnr valign='bottom:)
(:cellnr valign='top:)
(:cellnr:)
(:cellnr valign='bottom:) teste
(:cellnr valign="bottom":)
(:cellnr valign='bottom':)
(:table border=1 width=65% align=right bgcolor=#cccc99 cellspacing=0 :)
(:table border=0 width=65% align=left bgcolor=#cccc99 cellspacing=0 cellpadding=5 :)
(:table border=1 width=30% align=right bgcolor=#cccc99 cellspacing=0 :)
(:table border=1 width=65% align=right bgcolor=#cccc99 cellspacing=0 :)
(:table border=1 width=30% align=right bgcolor=#cccc99 cellspacing=0 :) (:cellnr:)
(:table:)
(:table align="left" border=0 width=65% cellpadding=0 cellspacing=0 bgcolor=#fafafa :) (:cellnr valign="middle":)
(:tableend:)
(:cellnr valign="middle":)
Global Climate Change: We study relevant processes that influence the Earth's radiative balance by changing the radiation flux, such as changes in land use in the Amazon, transport of burned aerosols, and greenhouse gas emissions.
(:cellnr valign="middle":)

Global Climate Change: We study relevant processes that influence the Earth's radiative balance by changing the radiation flux, such as changes in land use in the Amazon, transport of burned aerosols, and greenhouse gas emissions.



Global Climate Change: We study relevant processes that influence the Earth's radiative balance by changing the radiation flux, such as changes in land use in the Amazon, transport of burned aerosols, and greenhouse gas emissions.

We investigated how natural and anthropogenic aerosols influence cloud formation mechanisms and precipitation in the Amazon. We use remote sensing techniques from ground and satellites, as well as in-situ aircraft measurements to study how aerosols alter the microphysical properties of clouds. We also use numerical models such as BRAMS and WRF-Chem to simulate the impact of aerosols on clouds and to study physical processes that cannot be measured directly.
We investigate how natural and anthropogenic aerosols influence cloud formation mechanisms and precipitation in the Amazon. We use remote sensing techniques from ground and satellites, as well as in-situ aircraft measurements to study how aerosols alter the microphysical properties of clouds. We also use numerical models such as BRAMS and WRF-Chem to simulate the impact of aerosols on clouds and to study physical processes that cannot be measured directly.
We study urban air pollution in several Brazilian cities. We have developed models that quantify aerosol sources and their atmospheric processes. We also investigated the relationship between pollution levels and their effects on population health. Another approach is the study that investigates meteorology and air mass circulation over metropolitan areas and the dispersion of pollutants.
We study urban air pollution in several Brazilian cities. We develop models that quantify aerosol sources and their atmospheric processes. We also investigate the relationship between pollution levels and their effects on population health. Another approach is the study that investigates meteorology and air mass circulation over metropolitan areas and the dispersion of pollutants.
(:table align="left" border=0 width=70% cellpadding=0 cellspacing=0 bgcolor=#fafafa :)
(:table align="left" border=0 width=65% cellpadding=0 cellspacing=0 bgcolor=#fafafa :)
(:table align="left" border=0 width=50% cellpadding=0 cellspacing=0 bgcolor=#fafafa :)
(:table align="left" border=0 width=70% cellpadding=0 cellspacing=0 bgcolor=#fafafa :)
(:table align="left" border=0 width=90% cellpadding=0 cellspacing=0 bgcolor=#fafafa :)
(:table align="left" border=0 width=50% cellpadding=0 cellspacing=0 bgcolor=#fafafa :)

(:cell valign="middle":)

(:cell valign="top":)
(:table align="left" border=0 width=90% cellpadding=150 cellspacing=0 bgcolor=#fafafa :)
(:table align="left" border=0 width=90% cellpadding=0 cellspacing=0 bgcolor=#fafafa :)
(:table align="left" border=0 width=90% cellpadding=150 cellspacing=150 bgcolor=#fafafa :)
(:table align="left" border=0 width=90% cellpadding=150 cellspacing=0 bgcolor=#fafafa :)
(:table align="left" border=0 width=90% cellpadding=150 cellspacing=150px bgcolor=#fafafa :)
(:table align="left" border=0 width=90% cellpadding=150 cellspacing=150 bgcolor=#fafafa :)
(:table align="left" border=0 width=90% cellpadding=150 cellspacing=0 bgcolor=#fafafa :)
(:table align="left" border=0 width=90% cellpadding=150 cellspacing=150px bgcolor=#fafafa :)
(:cellnr valign="middle":)
(:cellnr valign="middle":)\\
(:table align="left" border=0 width=100% cellpadding=150 cellspacing=0 bgcolor=#fafafa :)
(:table align="left" border=0 width=90% cellpadding=150 cellspacing=0 bgcolor=#fafafa :)
(:table align="left" border=0 width=100% cellpadding=150 cellspacing=0 bgcolor=#ffffff :)
(:table align="left" border=0 width=100% cellpadding=150 cellspacing=0 bgcolor=#fafafa :)
(:table align="left" border=0 width=100% cellpadding=150 cellspacing=0 bgcolor=#f3f3f3 :)
(:table align="left" border=0 width=100% cellpadding=150 cellspacing=0 bgcolor=#ffffff :)
(:table align="left" border=0 width=100% cellpadding=150 cellspacing=0 bgcolor=#efefef :)
(:table align="left" border=0 width=100% cellpadding=150 cellspacing=0 bgcolor=#f3f3f3 :)
(:table align="left" border=0 width=100% cellpadding=150 cellspacing=0 bgcolor=#eeeeee :)
(:table align="left" border=0 width=100% cellpadding=150 cellspacing=0 bgcolor=#efefef :)
(:table align="left" border=0 width=100% cellpadding=150 cellspacing=0 bgcolor=#dddddd :)
(:table align="left" border=0 width=100% cellpadding=150 cellspacing=0 bgcolor=#eeeeee :)
(:table align="left" border=0 width=100% cellpadding=150 cellspacing=0 bgcolor=#101010 :)
(:table align="left" border=0 width=100% cellpadding=150 cellspacing=0 bgcolor=#dddddd :)
(:table align="left" border=0 width=100% cellpadding=150 cellspacing=0 style="background-color:ivory;cellpadding=150":)
(:table align="left" border=0 width=100% cellpadding=150 cellspacing=0 bgcolor=#101010 :)
(:table align="left" border=0 width=100% cellpadding=150 cellspacing=0 style="background-color:ivory;":)
(:table align="left" border=0 width=100% cellpadding=150 cellspacing=0 style="background-color:ivory;cellpadding=150":)
(:table align="left" border=0 width=100% cellpadding=150 cellspacing=50 style="background-color:ivory;":)
(:table align="left" border=0 width=100% cellpadding=150 cellspacing=0 style="background-color:ivory;":)
(:table align="left" border=1 width=100% cellpadding=150 cellspacing=50 style="background-color:ivory;":)
(:table align="left" border=0 width=100% cellpadding=150 cellspacing=50 style="background-color:ivory;":)
(:cellnr:)
(:cellnr:)\\
(:cell:)teste
(:cell:) Global Climate Change: We study relevant processes that influence the Earth's radiative balance by changing the radiation flux, such as changes in land use in the Amazon, transport of burned aerosols, and greenhouse gas emissions.
(:table align="left" border=1 cellpadding=150 cellspacing=50 style="background-color:ivory;":)
(:table align="left" border=1 width=100% cellpadding=150 cellspacing=50 style="background-color:ivory;":)
(:table align="left" border=1 cellpadding=50 cellspacing=50 style="background-color:ivory;":)
(:table align="left" border=1 cellpadding=150 cellspacing=50 style="background-color:ivory;":)
(:table align="left" border=1 cellpadding=50 cellspacing=0 style="background-color:ivory;":)
(:table align="left" border=1 cellpadding=50 cellspacing=50 style="background-color:ivory;":)
(:table align="left" border=1 cellpadding=50 cellspacing=50 style="background-color:ivory;":)
(:table align="left" border=1 cellpadding=50 cellspacing=0 style="background-color:ivory;":)
(:table align="left" border=1 cellpadding=0 cellspacing=50 style="background-color:ivory;":)
(:table align="left" border=1 cellpadding=50 cellspacing=50 style="background-color:ivory;":)
(:table align="left" border=1 cellpadding=0 cellspacing=5 style="background-color:ivory;":)
(:table align="left" border=1 cellpadding=0 cellspacing=50 style="background-color:ivory;":)
(:table align="left" border=1 cellpadding=0 cellspacing=0 style="background-color:ivory;":)
(:table align="left" border=1 cellpadding=0 cellspacing=5 style="background-color:ivory;":)
(:table align="left" border=1 cellpadding=5 cellspacing=0 style="background-color:ivory;":)
(:table align="left" border=1 cellpadding=0 cellspacing=0 style="background-color:ivory;":)
(:table align="left" style="background-color:ivory;":)
(:table align="left" border=1 cellpadding=5 cellspacing=0 style="background-color:ivory;":)
(:table align="right" style="background-color:ivory;":)
(:table align="left" style="background-color:ivory;":)
Another fine wellington day

(:table align="right" style="background-color:ivory;":) (:cellnr:) Another fine wellington day (:tableend:)











teste


Global Climate Change: We study relevant processes that influence the Earth's radiative balance by changing the radiation flux, such as changes in land use in the Amazon, transport of burned aerosols, and greenhouse gas emissions.

Global Climate Change: We study relevant processes that influence the Earth's radiative balance by changing the radiation flux, such as changes in land use in the Amazon, transport of burned aerosols, and greenhouse gas emissions.

Global Climate Change: We study relevant processes that influence the Earth's radiative balance by changing the radiation flux, such as changes in land use in the Amazon, transport of burned aerosols, and greenhouse gas emissions.

Global Climate Change: We study relevant processes that influence the Earth's radiative balance by changing the radiation flux, such as changes in land use in the Amazon, transport of burned aerosols, and greenhouse gas emissions.

Global Climate Change: We study relevant processes that influence the Earth's radiative balance by changing the radiation flux, such as changes in land use in the Amazon, transport of burned aerosols, and greenhouse gas emissions.

Global Climate Change: We study relevant processes that influence the Earth's radiative balance by changing the radiation flux, such as changes in land use in the Amazon, transport of burned aerosols, and greenhouse gas emissions.

Global Climate Change: We study relevant processes that influence the Earth's radiative balance by changing the radiation flux, such as changes in land use in the Amazon, transport of burned aerosols, and greenhouse gas emissions.

Global Climate Change: We study relevant processes that influence the Earth's radiative balance by changing the radiation flux, such as changes in land use in the Amazon, transport of burned aerosols, and greenhouse gas emissions.

Global Climate Change: We study relevant processes that influence the Earth's radiative balance by changing the radiation flux, such as changes in land use in the Amazon, transport of burned aerosols, and greenhouse gas emissions.

Global Climate Change: We study relevant processes that influence the Earth's radiative balance by changing the radiation flux, such as changes in land use in the Amazon, transport of burned aerosols, and greenhouse gas emissions.

Global Climate Change: We study relevant processes that influence the Earth's radiative balance by changing the radiation flux, such as changes in land use in the Amazon, transport of burned aerosols, and greenhouse gas emissions.

Global Climate Change: We study relevant processes that influence the Earth's radiative balance by changing the radiation flux, such as changes in land use in the Amazon, transport of burned aerosols, and greenhouse gas emissions.

Global Climate Change: We study relevant processes that influence the Earth's radiative balance by changing the radiation flux, such as changes in land use in the Amazon, transport of burned aerosols, and greenhouse gas emissions.

Global Climate Change: We study relevant processes that influence the Earth's radiative balance by changing the radiation flux, such as changes in land use in the Amazon, transport of burned aerosols, and greenhouse gas emissions.


Global Climate Change: We study relevant processes that influence the Earth's radiative balance by changing the radiation flux, such as changes in land use in the Amazon, transport of burned aerosols, and greenhouse gas emissions.

Global Climate Change: We study relevant processes that influence the Earth's radiative balance by changing the radiation flux, such as changes in land use in the Amazon, transport of burned aerosols, and greenhouse gas emissions.



Global Climate Change: We study relevant processes that influence the Earth's radiative balance by changing the radiation flux, such as changes in land use in the Amazon, transport of burned aerosols, and greenhouse gas emissions.



Global Climate Change: We study relevant processes that influence the Earth's radiative balance by changing the radiation flux, such as changes in land use in the Amazon, transport of burned aerosols, and greenhouse gas emissions.



Global Climate Change: We study relevant processes that influence the Earth's radiative balance by changing the radiation flux, such as changes in land use in the Amazon, transport of burned aerosols, and greenhouse gas emissions.







Global Climate Change: We study relevant processes that influence the Earth's radiative balance by changing the radiation flux, such as changes in land use in the Amazon, transport of burned aerosols, and greenhouse gas emissions.


Global Climate Change:
We study relevant processes that influence the Earth's radiative balance by changing the radiation flux, such as changes in land use in the Amazon, transport of burned aerosols, and greenhouse gas emissions.

Global Climate Change: We study relevant processes that influence the Earth's radiative balance by changing the radiation flux, such as changes in land use in the Amazon, transport of burned aerosols, and greenhouse gas emissions.

Global Climate Change:

Global Climate Change:
The Atmospheric Physics Laboratory (LFA) investigates the properties of the atmosphere. We especially study the life cycle of aerosols and clouds, and how they may be affected by human activities. We do this in urban areas like São Paulo, looking at issues associated with urban pollution, and in the Amazon, looking at issues linked to global climate change. For this, we operate several experimental sites where we measure optical, physical, and chemical properties of the atmosphere. We also collect filters with particulate matter for specific laboratory analysis.
The Atmospheric Physics Laboratory (LFA) investigates the properties of the atmosphere. We especially study the life cycle of aerosols and clouds, and how they may be affected by human activities. We do this in urban areas like São Paulo, looking at issues associated with urban pollution, and in the Amazon, looking at issues linked to global climate change. For this, we operate several experimental sites where we measure optical, physical, and chemical properties of the atmosphere. We also collect filters with particulate matter for specific laboratory analysis. Briefly, the group has been developing the following research:
Briefly, the group has been developing the following research:
1. Global Climate Change:
Global Climate Change:
2. Natural aerosols in the Amazon
Natural aerosols in the Amazon
3. Biomass Burning Aerosols
Biomass Burning Aerosols
4. Water vapor, clouds and convection
Water vapor, clouds and convection
5. Interactions between cloud aerosols and precipitation
Interactions between cloud aerosols and precipitation
6. Urban air pollution'
Urban air pollution
The Atmospheric Physics Laboratory (LFA) investigates the properties of the atmosphere. We especially study the life cycle of aerosols and clouds, and how they may be affected by human activities. We do this in urban areas like São Paulo, looking at issues associated with urban pollution, and in the Amazon, looking at issues linked to global climate change. For this, we operate several experimental sites where we measure optical, physical, and chemical properties of the atmosphere. We also collect filters with particulate matter for specific laboratory analysis. Our research projects have many international and national partnerships, including NASA, the Max Planck Institute, Harvard, Stockholm and Lille Universities, INPA, INPE and several Brazilian universities.
The Atmospheric Physics Laboratory (LFA) investigates the properties of the atmosphere. We especially study the life cycle of aerosols and clouds, and how they may be affected by human activities. We do this in urban areas like São Paulo, looking at issues associated with urban pollution, and in the Amazon, looking at issues linked to global climate change. For this, we operate several experimental sites where we measure optical, physical, and chemical properties of the atmosphere. We also collect filters with particulate matter for specific laboratory analysis.
(:comment Our research projects have many international and national partnerships, including [[https://www.nasa.gov/|NASA]], the [[https://www.mpg.de/153030/chemie|Max Planck Institute]], [[https://martin.seas.harvard.edu/|Harvard]], [[https://www.aces.su.se/|Stockholm]] and [[http://sage.imt-lille-douai.fr/|Lille]] Universities, INPA, INPE and several Brazilian universities. :)
3. Biomass Burning Aerosols'
3. Biomass Burning Aerosols
3. Aerosols of burning in the Amazon.'

3. Biomass Burning Aerosols'
6. Urban air pollution.'
6. Urban air pollution'




<a href='https://www.freepik.com/vectors/people'>People vector created by freepik - www.freepik.com</a>

6. Urban air pollution.'
6. Urban air pollution.'

<a href='https://www.freepik.com/vectors/people'>People vector created by freepik - www.freepik.com</a>
1. Global Climate Change:
1. Global Climate Change:

2. Natural aerosols in the Amazon

2. Aerosols of burning in the Amazon.
3. Aerosols of burning in the Amazon.'
4. Water vapor, clouds and convection
4. Water vapor, clouds and convection
5. Interactions between cloud aerosols and precipitation
5. Interactions between cloud aerosols and precipitation
6. Urban air pollution.
6. Urban air pollution.'
Attach:rascado.jpg Δ 2. Natural aerosols in the Amazon

2. Natural aerosols in the Amazon
Attach:rascado.jpg Δ 2. Natural aerosols in the Amazon
The Atmospheric Physics Laboratory (LFA) investigates the properties of the atmosphere. We especially study the life cycle of aerosols and clouds, and how they may be affected by human activities. We do this in urban areas like São Paulo, looking at issues associated with urban pollution, and in the Amazon, looking at issues linked to global climate change. For this, we operate several experimental sites where we measure optical, physical, and chemical properties of the atmosphere. We also collect filters with particulate matter for specific laboratory analysis. Our research projects have many international and national partnerships, including NASA, the Max Planck Institute, Harvard, Stockholm and Lille Universities, INPA, INPE and several Brazilian universities.
The Atmospheric Physics Laboratory (LFA) investigates the properties of the atmosphere. We especially study the life cycle of aerosols and clouds, and how they may be affected by human activities. We do this in urban areas like São Paulo, looking at issues associated with urban pollution, and in the Amazon, looking at issues linked to global climate change. For this, we operate several experimental sites where we measure optical, physical, and chemical properties of the atmosphere. We also collect filters with particulate matter for specific laboratory analysis. Our research projects have many international and national partnerships, including NASA, the Max Planck Institute, Harvard, Stockholm and Lille Universities, INPA, INPE and several Brazilian universities.
We study the life cycle of natural aerosols in the Amazon. We seek to understand how the forest emits volatile organic compounds, which produce aerosol particles, which serve as condensation nuclei, allowing it to rain. Our main experimental site is the Amazon Tall Tower Observatory (ATTO), a unique laboratory in tropical regions, with a 325 m tower in the middle of the Amazon rainforest, where we also measure cloud properties.
We study the life cycle of natural aerosols in the Amazon. We seek to understand how the forest emits volatile organic compounds, which produce aerosol particles, which serve as condensation nuclei, allowing it to rain. Our main experimental site is the Amazon Tall Tower Observatory (ATTO), a unique laboratory in tropical regions, with a 325 m tower in the middle of the Amazon rainforest, where we also measure cloud properties.
For more information about LFA please contact Prof. Alexandre Lima Correia, Prof. Henrique de Melo Jorge Barbosa or Prof. Paulo Eduardo Artaxo Netto.
For more information about LFA please contact Prof. Alexandre Lima Correia, Prof. Henrique de Melo Jorge Barbosa or Prof. Paulo Eduardo Artaxo Netto.
The Laboratory of Atmospheric Physics develops research related to atmospheric physics, particularly physical and chemical properties of atmospheric aerosols, atmospheric trace gases and clouds. Our main reseach sites are in the Amazon region, but we also study air pollution in urban areas. Our approach includes in-situ measurements, ground and satellite based remote sensing and numerical modeling.
The Atmospheric Physics Laboratory (LFA) investigates the properties of the atmosphere. We especially study the life cycle of aerosols and clouds, and how they may be affected by human activities. We do this in urban areas like São Paulo, looking at issues associated with urban pollution, and in the Amazon, looking at issues linked to global climate change. For this, we operate several experimental sites where we measure optical, physical, and chemical properties of the atmosphere. We also collect filters with particulate matter for specific laboratory analysis. Our research projects have many international and national partnerships, including NASA, the Max Planck Institute, Harvard, Stockholm and Lille Universities, INPA, INPE and several Brazilian universities.
Briefly, the group has been developing the following research:
1. Global Climate Change: We study relevant processes that influence the Earth's radiative balance by changing the radiation flux, such as changes in land use in the Amazon, transport of burned aerosols, and greenhouse gas emissions.
2. Natural aerosols in the Amazon We study the life cycle of natural aerosols in the Amazon. We seek to understand how the forest emits volatile organic compounds, which produce aerosol particles, which serve as condensation nuclei, allowing it to rain. Our main experimental site is the Amazon Tall Tower Observatory (ATTO), a unique laboratory in tropical regions, with a 325 m tower in the middle of the Amazon rainforest, where we also measure cloud properties.
2. Aerosols of burning in the Amazon. Emissions from burning in the Amazon have important implications for regional and global climate and the health of the region's population. We use experimental sites in the Amazon to characterize burn aerosols and understand their effects on climate and health. In partnership with the Department of Atmospheric Sciences, we study the large-scale transportation of aerosols and gases emitted from burning. We use the WRF-Chem model to study transport processes from the Amazon to other regions of South America.
4. Water vapor, clouds and convection We study the transport of water vapor from the Amazon rainforest from evapotranspiration to other regions of the continent where it can contribute to precipitation. We use tools such as complex networks and artificial intelligence to analyze how deforestation and climate change can affect this important ecosystem service. We also use remote sensing to investigate the relationship between water vapor and cloud formation in the Amazon.
5. Interactions between cloud aerosols and precipitation We investigated how natural and anthropogenic aerosols influence cloud formation mechanisms and precipitation in the Amazon. We use remote sensing techniques from ground and satellites, as well as in-situ aircraft measurements to study how aerosols alter the microphysical properties of clouds. We also use numerical models such as BRAMS and WRF-Chem to simulate the impact of aerosols on clouds and to study physical processes that cannot be measured directly.
6. Urban air pollution. We study urban air pollution in several Brazilian cities. We have developed models that quantify aerosol sources and their atmospheric processes. We also investigated the relationship between pollution levels and their effects on population health. Another approach is the study that investigates meteorology and air mass circulation over metropolitan areas and the dispersion of pollutants.
For more information about LFA please contact Prof. Alexandre Lima Correia, Prof. Henrique de Melo Jorge Barbosa or Prof. Paulo Eduardo Artaxo Netto.
Faculty
Attach:Alexandre.gif Δ Alexandre Lima Correia
Works with atmospheric remote sensing, with focus on physical properties of aerosols and clouds, and climate change.
CV Lattes: http://lattes.cnpq.br/6209649630219621
Attach:Henrique.gif Δ Henrique de Melo Jorge Barbosa
Works on understanding the role of water vapor and clouds on the climate system and how it might be changed by anthropogenic influences. Has particular interest on large-scale water vapor transport and the importance of the Amazon forest for the moisture recycling and subtropical precipitation over South America. Worked with physical parameterizations in climate models, particularly radiation and convection, and the development of the Brazilian Earth System Model.
CV Lattes: http://lattes.cnpq.br/1727283700680766
Homepage: http://www.fap.if.usp.br/~hbarbosa
Attach:Paulo.gif Δ Paulo Eduardo Artaxo Netto
Works with physics applied to environmental problems, with focus on global climate change, Amazonian environment, chemistry and physics of aerosol particles, and air pollution.
CV Lattes http://lattes.cnpq.br/3977660018939385
Realizou sua graduação em Física pela USP (1977), mestrado em Física Nuclear pela USP (1980) e é Doutor em Física Atmosférica pela USP (1985). Trabalhou na NASA (Estados Unidos), Universidades de Antuérpia (Bélgica), Lund (Suécia) e Harvard (Estados Unidos). Atualmente é professor titular do Departamento de Física Aplicada do Instituto de Física da USP. Trabalha com física aplicada a problemas ambientais, atuando principalmente nas questões de mudanças climáticas globais, meio ambiente na Amazônia, física de aerossóis atmosféricos, poluição do ar urbana e outros temas.
Works with physics applied to environmental problems, with focus on global climate change, Amazonian environment, chemistry and physics of aerosol particles, and air pollution.
possui graduação em Física pela Universidade Estadual de Campinas (1994), mestrado em Física Atmosférica pela Universidade de São Paulo (1998) e doutorado em Física Atmosférica pela Universidade de São Paulo (2003). Realizou pós-doutorado no Instituto Nacional de Pesquisas Espaciais entre 2005 e 2007. "Fellow" junto ao programa de pós-doutoramento da NASA Goddard Space Flight Center, desenvolve pesquisa experimental sobre a interação entre aerossóis e nuvens em parceria com a Universidade de Maryland, Baltimore County. Atualmente é Professor Doutor do Instituto de Física da USP e estuda interações entre aerossóis e nuvens. Tem experiência na área de Física Atmosférica, com ênfase em Sensoriamento Remoto da Atmosfera, atuando principalmente nos seguintes temas: propriedades físicas de nuvens e aerossóis atmosféricos, mudanças climáticas e Bacia Amazônica.
Works with atmospheric remote sensing, with focus on physical properties of aerosols and clouds, and climate change.
I am a professor of Physics at the Physics Institute of the University of São Paulo. I'm graduated with a B.S. degree in physics (1997) from State University of Campinas (UNICAMP), Campinas-SP, Brazil. My Msc (2000) and Phd degrees (2004) are both in physics from the same university. I was a postdoctoral fellow at the Brazilian Institute for Space Research (INPE) for three years, where I latter worked as an assistant researcher before moving to my current position in 2008. At USP I teache undergrad courses on experimental physics as well as graduate courses on Global Climate Modeling.
My current research has a focus on understanding the role of water vapor and clouds on the climate system and how it might be changed by anthropogenic influences. I am the lead scientist of the Aerosols, Clouds, cONvection, Experiment (ACONVEX) which is planned to be the first long term (+10yr) deployment of in-situ and remote sensing instruments in the Amazon rain forest for the observation of clouds-climate-aerosol interactions. Measurements on the experimental site already include aerosol optical properties; water vapor, clouds and aerosol vertical profiles; hydrometeors size distribution; among others. My interests also include large-scale water vapor transport and the importance of the Amazon forest for the moisture recycling and subtropical precipitation over South America. I have worked with physical parameterizations in climate models, particularly radiation and convection, and the development of the Brazilian Earth System Model. I got my Phd on experimental astrophysics for studying the propagation of Nitrogen fluorescence light in the atmosphere as a technique to measure ultra high-energy cosmic rays.
Works on understanding the role of water vapor and clouds on the climate system and how it might be changed by anthropogenic influences. Has particular interest on large-scale water vapor transport and the importance of the Amazon forest for the moisture recycling and subtropical precipitation over South America. Worked with physical parameterizations in climate models, particularly radiation and convection, and the development of the Brazilian Earth System Model.
realizou sua graduação em Física pela USP (1977), mestrado em Física Nuclear pela USP (1980) e é Doutor em Física Atmosférica pela USP (1985). Trabalhou na NASA (Estados Unidos), Universidades de Antuérpia (Bélgica), Lund (Suécia) e Harvard (Estados Unidos). Atualmente é professor titular do Departamento de Física Aplicada do Instituto de Física da USP. Trabalha com física aplicada a problemas ambientais, atuando principalmente nas questões de mudanças climáticas globais, meio ambiente na Amazônia, física de aerossóis atmosféricos, poluição do ar urbana e outros temas.
Realizou sua graduação em Física pela USP (1977), mestrado em Física Nuclear pela USP (1980) e é Doutor em Física Atmosférica pela USP (1985). Trabalhou na NASA (Estados Unidos), Universidades de Antuérpia (Bélgica), Lund (Suécia) e Harvard (Estados Unidos). Atualmente é professor titular do Departamento de Física Aplicada do Instituto de Física da USP. Trabalha com física aplicada a problemas ambientais, atuando principalmente nas questões de mudanças climáticas globais, meio ambiente na Amazônia, física de aerossóis atmosféricos, poluição do ar urbana e outros temas.
Alexandre Lima Correia
Alexandre Lima Correia
Henrique de Melo Jorge Barbosa
Attach:Henrique.gif Δ Henrique de Melo Jorge Barbosa
Attach:Paulo.gif Δ Paulo Eduardo Artaxo Netto
Alexandre Lima Correia
Alexandre Lima Correia
Alexandre Lima Correia
Alexandre Lima Correia
The Laboratory of Atmospheric Physics develops research related to atmospheric physics, particularly physical and chemical properties of atmospheric aerosols, atmospheric trace gases and clouds. Our main reseach sites are in the Amazon region, but we also study air pollution in urban areas. Our approach includes in-situ measurements, ground and satellite based remote sensing and numerical modelling.
In this webpage you will find information on our experimental sites, current on-going projects, some snapshoots of real time data and instructions for accessing our ftp server. More information about the group can be found here, at the oficial webpage at our Physics Institute.
The Laboratory of Atmospheric Physics develops research related to atmospheric physics, particularly physical and chemical properties of atmospheric aerosols, atmospheric trace gases and clouds. Our main reseach sites are in the Amazon region, but we also study air pollution in urban areas. Our approach includes in-situ measurements, ground and satellite based remote sensing and numerical modeling.
In this webpage you will find information on our experimental sites, current on-going projects, some snapshoots of real time data and instructions for accessing our ftp server. More information about the group can be found here, at the oficial webpage at our Physics Institute.
In this webpage you will find information on our experimental sites, current on-going projects, some snapshoots of real time data and instructions for accessing our ftp server. More information about the group can be found here, at the oficial webpage at our Physics Institute.
Alexandre Lima Correia
possui graduação em Física pela Universidade Estadual de Campinas (1994), mestrado em Física Atmosférica pela Universidade de São Paulo (1998) e doutorado em Física Atmosférica pela Universidade de São Paulo (2003). Realizou pós-doutorado no Instituto Nacional de Pesquisas Espaciais entre 2005 e 2007. "Fellow" junto ao programa de pós-doutoramento da NASA Goddard Space Flight Center, desenvolve pesquisa experimental sobre a interação entre aerossóis e nuvens em parceria com a Universidade de Maryland, Baltimore County. Atualmente é Professor Doutor do Instituto de Física da USP e estuda interações entre aerossóis e nuvens. Tem experiência na área de Física Atmosférica, com ênfase em Sensoriamento Remoto da Atmosfera, atuando principalmente nos seguintes temas: propriedades físicas de nuvens e aerossóis atmosféricos, mudanças climáticas e Bacia Amazônica.
CV Lattes: http://lattes.cnpq.br/6209649630219621
Henrique de Melo Jorge Barbosa
I am a professor of Physics at the Physics Institute of the University of São Paulo. I'm graduated with a B.S. degree in physics (1997) from State University of Campinas (UNICAMP), Campinas-SP, Brazil. My Msc (2000) and Phd degrees (2004) are both in physics from the same university. I was a postdoctoral fellow at the Brazilian Institute for Space Research (INPE) for three years, where I latter worked as an assistant researcher before moving to my current position in 2008. At USP I teache undergrad courses on experimental physics as well as graduate courses on Global Climate Modeling.
My current research has a focus on understanding the role of water vapor and clouds on the climate system and how it might be changed by anthropogenic influences. I am the lead scientist of the Aerosols, Clouds, cONvection, Experiment (ACONVEX) which is planned to be the first long term (+10yr) deployment of in-situ and remote sensing instruments in the Amazon rain forest for the observation of clouds-climate-aerosol interactions. Measurements on the experimental site already include aerosol optical properties; water vapor, clouds and aerosol vertical profiles; hydrometeors size distribution; among others. My interests also include large-scale water vapor transport and the importance of the Amazon forest for the moisture recycling and subtropical precipitation over South America. I have worked with physical parameterizations in climate models, particularly radiation and convection, and the development of the Brazilian Earth System Model. I got my Phd on experimental astrophysics for studying the propagation of Nitrogen fluorescence light in the atmosphere as a technique to measure ultra high-energy cosmic rays.
CV Lattes: http://lattes.cnpq.br/1727283700680766
realizou sua graduação em Física pela USP (1977), mestrado em Física Nuclear pela USP (1980) e é Doutor em Física Atmosférica pela USP (1985). Trabalhou na NASA (Estados Unidos), Universidades de Antuérpia (Bélgica), Lund (Suécia) e Harvard (Estados Unidos). Atualmente é professor titular do Departamento de Física Aplicada do Instituto de Física da USP. Trabalha com física aplicada a problemas ambientais, atuando principalmente nas questões de mudanças climáticas globais, meio ambiente na Amazônia, física de aerossóis atmosféricos, poluição do ar urbana e outros temas.
CV Lattes http://lattes.cnpq.br/3977660018939385
In this webpage you will find information on our experimental sites, current on-going projects, some snapshoots of real time data and instructions for accessing our ftp server. More information about the group can be found here, at the oficial webpage at our Physics Institute
In this webpage you will find information on our experimental sites, current on-going projects, some snapshoots of real time data and instructions for accessing our ftp server. More information about the group can be found here, at the oficial webpage at our Physics Institute.
O laboratório de física atmosférica desenvolve trabalhos relacionados à propriedades físicas e químicas da atmosfera, entre os quais se destacam o estudo do meio ambiente nas regiões amazônica, antártida e nos andes. Além disso, o grupo também estuda a poluição do ar em áreas urbanas, sensoriamento remoto da atmosfera e de propriedades de superfície, balanço de radiação da atmosfera, propriedades físicas e químicas de aerossóis atmosféricos, técnicas analíticas para análise de poluentes atmosféricos, e modelamento de processos físicos e químicos da atmosfera. Trabalhamos também intensamente no experimento LBA (experimento de grande escala da biosfera e da atmosfera da amazônia).
Homepage oficial do grupo
The Laboratory of Atmospheric Physics develops research related to atmospheric physics, particularly physical and chemical properties of atmospheric aerosols, atmospheric trace gases and clouds. Our main reseach sites are in the Amazon region, but we also study air pollution in urban areas. Our approach includes in-situ measurements, ground and satellite based remote sensing and numerical modelling.
In this webpage you will find information on our experimental sites, current on-going projects, some snapshoots of real time data and instructions for accessing our ftp server. More information about the group can be found here, at the oficial webpage at our Physics Institute
O laboratório de física atmosférica desenvolve trabalhos relacionados à propriedades físicas e químicas da atmosfera, entre os quais se destacam o estudo do meio ambiente nas regiões amazônica, antártida e nos andes.
Além disso, o grupo também estuda a poluição do ar em áreas urbanas, sensoriamento remoto da atmosfera e de propriedades de superfície, balanço de radiação da atmosfera, propriedades físicas e químicas de aerossóis atmosféricos, técnicas analíticas para análise de poluentes atmosféricos, e modelamento de processos físicos e químicos da atmosfera. Trabalhamos também intensamente no experimento LBA (experimento de grande escala da biosfera e da atmosfera da amazônia).
O laboratório de física atmosférica desenvolve trabalhos relacionados à propriedades físicas e químicas da atmosfera, entre os quais se destacam o estudo do meio ambiente nas regiões amazônica, antártida e nos andes. Além disso, o grupo também estuda a poluição do ar em áreas urbanas, sensoriamento remoto da atmosfera e de propriedades de superfície, balanço de radiação da atmosfera, propriedades físicas e químicas de aerossóis atmosféricos, técnicas analíticas para análise de poluentes atmosféricos, e modelamento de processos físicos e químicos da atmosfera. Trabalhamos também intensamente no experimento LBA (experimento de grande escala da biosfera e da atmosfera da amazônia).
Homepage oficial do grupo
Welcome to PmWiki!
teste
A local copy of PmWiki's documentation has been installed along with the software, and is available via the documentation index.
To continue setting up PmWiki, see initial setup tasks.
The basic editing page describes how to create pages in PmWiki. You can practice editing in the wiki sandbox.
More information about PmWiki is available from http://www.pmwiki.org .
O laboratório de física atmosférica desenvolve trabalhos relacionados à propriedades físicas e químicas da atmosfera, entre os quais se destacam o estudo do meio ambiente nas regiões amazônica, antártida e nos andes.
Além disso, o grupo também estuda a poluição do ar em áreas urbanas, sensoriamento remoto da atmosfera e de propriedades de superfície, balanço de radiação da atmosfera, propriedades físicas e químicas de aerossóis atmosféricos, técnicas analíticas para análise de poluentes atmosféricos, e modelamento de processos físicos e químicos da atmosfera. Trabalhamos também intensamente no experimento LBA (experimento de grande escala da biosfera e da atmosfera da amazônia).